DOI:10.12158/j.2096-3203.2024.06.022

基于量测和热平衡方程的输电线路温度分段实时估计

于学良¹,方立华¹,曹永吉²,张恒旭³,李邵⁴,李常刚³
(1. 国网山东省电力公司潍坊供电公司,山东 潍坊 261000;2. 山东大学智能创新研究院,山东 济南 250101;3. 山东大学电气工程学院,山东 济南 250061;

4. 国网山东省电力公司青州市供电公司,山东 青州 262500)

摘 要:输电线路温度是评价线路输送能力的重要指标,可作为线路动态增容的依据,指导电网的实时调度决策。 基于量测量和热平衡方程,文中提出一种输电线路温度实时估计模型,将线路温度作为状态量,引入线路动态热平 衡方程作为伪量测量。将热平衡方程离散化处理,进而利用交替解法和联立解法求解微分-代数方程组。考虑到 长输电线路沿线气象条件的复杂性,将线路分段后引入虚拟节点,利用二端口网络方程计算虚拟节点的量测量,提 出一种更为精细化的线路温度分段估计方法。采用改进的 IEEE 5 节点、IEEE 39 节点算例以及实际线路验证了所 提算法的有效性。结果表明,所提算法能够适应多种运行场景,实现线路温度的快速准确估计;考虑线路分段后, 所提算法能够准确估计各段线路的实时温度轨迹,实用性强。

关键词:输电线路;温度估计;热平衡方程;量测装置;线路分段;隐式梯形积分法
 中图分类号:TM73
 文献标志码:A
 文章编号:2096-3203(2024)06-0223-12

0 引言

随着经济社会的高速发展,用电负荷攀升,电 力需求持续增长,与此同时,可用煤炭储量逐步缩 减,火力发电污染加重,电力供需矛盾亟须解 决^[1-2]。为提高输电线路的输送能力,一方面可以 新建线路走廊、提高输电电压等级,但会增加投资 成本;另一方面可以利用输电线路动态增容技术, 考虑气象因素和实际运行工况,充分挖掘现有线路 的热载荷潜力^[3-5]。输电线路温度是评价线路输送 能力的重要指标,可作为评判线路过载、实现动态 增容的重要依据。监测线路温度,计算线路动态热 定值,实时指导负荷高峰期的调度与运行,对于电 网的安全经济运行意义重大。

输电线路温度监测与估计算法,大致可以分为 2类。一类是在输电线路上安装热传感器实现温度 在线监测^[6-10]。文献[6]提出基于 ZigBee 和低功率 广域网络技术的线路测温装置,并利用实际运行线 路进行测试。文献[7]设计一种基于分布式光纤传 感器的测温装置,集成了线路监测、数据上传与分 析、异常预警等功能模块。文献[8-10]综述了基于 分布式光纤传感技术实现输电线路温度、局部放 电、舞动等运行状态感知的最新研究进展。总而言

收稿日期:2024-04-06;修回日期:2024-06-11

基金项目:国家自然科学基金资助项目(52177096);山东省 自然科学基金资助项目"交直流混联复杂大电网多驱动方 式低频切负荷协同控制"(ZR2021QE133) 之,利用测温装置直接监测线路温度,操作简单可 靠,若能够与数据采集与监视控制(supervisory control and data acquisition,SCADA)系统或广域监 测系统(wide area measurement system,WAMS)集 成,将线路温度应用于状态估计和安全约束调度等 高级应用,将具有广阔的发展前景。目前,基于各 类传感设备的线路测温装置已经较为成熟,且在国 内电网多条110 kV 和220 kV 线路上投入运行,应 用效果良好^[11-14]。然而,户外传感装置工作环境相 对恶劣,数据采集和传输质量可能会受到强磁干 扰。此外,高电压输电线路地理跨度大,沿线气象 条件和线路温度存在差异,须多点测量以提高精 度,这也将增加测温装置投资。

另一类是通过线路电气量和气象数据,利用热 平衡方程(heat balance equation,HBE)或人工智能 技术计算获得线路温度^[15-20]。这类方法无须安装 测温装置,能够大幅节省设备投资,经济性能显著 提高。文献[15]提出利用 SCADA 系统和相量量测 单元(phasor measurement unit,PMU)量测量进行温 度跟踪估计,建立半参数平差模型实现线路温度的 稳定估计,估计结果较为平滑,不会出现较大偏离。 文献[16-17]提出一种考虑气象条件随机性的电热 潮流模型,分别利用马尔可夫链方法和权重平均值 模型对气象时空分布特性进行动态模拟。然而,上 述算法均将线路建模为集中参数模型,未考虑长输 电线路沿线温度分布不均匀的特性,线路温度估计 不够精确。文献[18]研究了输电线路沿线温度差 异对线路电压、电阻和功率传输极限的影响,结果 表明,沿线温度分布对线路传输功率和电压的影响 较大。文献[19-20]利用稳态热平衡方程和电气量 测量计算沿线温度,并根据温度变化设定门槛值对 线路进行分段处理。上述研究利用稳态热平衡方 程计算线路的动态载流量,进而实现输电线路的动 态增容,忽略了线路温度随时间变化的微分项。当 线路发生故障或负荷大幅波动时,电压、电流等电 气量突变,此时须考虑线路温度的动态变化过程, 求解热平衡微分方程以实时估计线路温度的变化 轨迹。

基于上述讨论,文中提出一种基于量测和 HBE 的输电线路温度分段实时估计算法。考虑到微分-代数方程组求解的复杂性,首先将 HBE 差分化,然 后联立电气量测方程,采用龙格库塔法或隐式梯形 积分法进行求解。考虑输电线路沿线气象分布特 性差异,将输电线路分段,实现更为精细化的线路 温度实时估计。该方法无须安装测温装置,仅利用 线路的已有量测量计算线路温度,对系统其他部分 的可观性无要求,计算精度和效率高,数值稳定性 好。以 IEEE 5 节点、IEEE 39 节点算例以及工程实 际线路为例,对文中所提算法的有效性和计算效率 进行验证,并模拟线路分段和数据采样频率差异, 分析其对估计结果的影响。

1 输电线路温度实时估计数学模型

1.1 加权最小二乘法状态估计原理

对于输电线路而言,在给定线路模型参数和量 测系统等条件下,其状态估计的量测方程^[21]可以表 示为:

$$\boldsymbol{z} = \boldsymbol{h}(\boldsymbol{x}) + \boldsymbol{v} \tag{1}$$

式中:z 为量测量;h(·)为量测函数;x 为状态量;v 为量测残差向量。

建立目标函数使得残差平方和最小:

$$J(x) = (z - h(x))^{\mathsf{T}} R^{-1} (z - h(x))$$
(2)
式中: R 为量测量权重矩阵。

最终得到状态量的迭代修正式为:

$$\begin{cases} \Delta \mathbf{x}^{(k)} = (\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \Delta z \\ \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \Delta \mathbf{x}^{(k)} \end{cases}$$
(3)

式中:H 为信息矩阵; $\Delta x^{(k)}$ 为第 k 次迭代状态量修 正向量; Δz 为计算残差列向量。加权最小二乘 (weighted least square, WLS)法原理及应用已经非常 成熟,文中不再赘述。

图 1 为输电线路的集中参数等值模型,线路两端节点分别为 *i* 和 *j*,*g_i*,*b_i*,*g_e*,*b*_e分别为线路 *i*-*j* 的串

联电导、串联电纳、并联电导和并联电纳。图中, P_i 、 Q_i 分别为节点 *i* 的注入有功功率和无功功率; P_{ij} 、 Q_{ij} 分别为线路 *i* 端的有功功率和无功功率; $I_{ij,real}$ 、 $I_{ij,imag}$ 分别为线路 *i* 端的电流实部和虚部,以流入线路方 向为正。

图 1 输电线路的集中参数模型

Fig.1 Lumped parameter model of transmission line

由于须估计线路温度,因此状态量除电压相量 外,还须增加线路温度,即状态量 x 扩充为 5×1 维 列向量。

 $\boldsymbol{x} = \begin{bmatrix} \boldsymbol{V} & \boldsymbol{\theta} & T \end{bmatrix} = \begin{bmatrix} V_i & V_j & \theta_i & \theta_j & T \end{bmatrix}^{\mathrm{T}}$ (4) 式中: V_i 、 θ_i 分别为线路 *i* 端的电压幅值、电压相角;*T* 为线路温度。

1.2 电气量测量及电气量测方程

目前,SCADA 系统作为能量管理系统的重要组成部分,在我国电网应用已非常成熟,各类远程终端单元和配电终端单元能够获取电气量的准稳态数据,并集中上传至调度中心。此外,基于 PMU 和现代高速通信技术的 WAMS 因其时间同步性好、广域互联性强、可直接测量相角数据等优势^[22],近年来在电力系统状态估计^[23-24]、安全稳定控制^[25]、故障定位^[26]等方面研究和应用前景广阔。上述系统能够为线路温度估计提供丰富可靠的数据源。

图 1 给出了 SCADA 和 PMU 装置的量测量,即:

$$\begin{cases} z_{\text{SCADA}} = \begin{bmatrix} V_i & P_{ij} & Q_{ij} \end{bmatrix}^{\text{T}} \\ z_{\text{PMU}} = \begin{bmatrix} V_i & \theta_i & I_{ii} & \theta_{ii} & P_{ii} & Q_{ii} \end{bmatrix}^{\text{T}} \end{cases}$$
(5)

式中: I_{ij} 为线路i端的电流幅值,以流入线路方向为 正; θ_{ij} 为线路两端的电压相角差。

文献[27]通过理论推导和算例仿真证明,直接 引入电流幅值和相角会恶化状态估计的收敛性能, 而将电流的极坐标形式转化为直角坐标表示后,收 敛性能大幅改善,文中沿用该思路,引入线路电流 伪量测量。

$$I_{ij,\text{real}} = I_{ij} \cos \theta_{ij} = V_i g_{ij} \cos \theta_i - V_j g_{ij} \cos \theta_j - V_i b_{ij} \sin \theta_i + V_j b_{ij} \sin \theta_j + V_i (g_c \cos \theta_i - b_c \sin \theta_i)$$
(6)

$$I_{ij,\text{imag}} = I_{ij} \sin \theta_{ij} = V_i b_{ij} \cos \theta_i - V_j b_{ij} \cos \theta_j + V_i g_{ij} \sin \theta_i - V_j g_{ij} \sin \theta_j + V_i (b_c \cos \theta_i + g_c \sin \theta_i)$$
(7)

综上所述,为估计输电线路温度,最终选定的 电气量测量如下:

$$\begin{cases} \boldsymbol{z} = \begin{bmatrix} \boldsymbol{z}_{\text{SCADA}} & \boldsymbol{z}_{\text{PMU}} \end{bmatrix}^{\text{T}} \\ \boldsymbol{z}_{\text{SCADA}} = \begin{bmatrix} \boldsymbol{V}_{i} & \boldsymbol{P}_{ij} & \boldsymbol{Q}_{ij} \end{bmatrix}^{\text{T}} \\ \boldsymbol{z}_{\text{PMU}} = \begin{bmatrix} \boldsymbol{V}_{i} & \boldsymbol{\theta}_{i} & \boldsymbol{I}_{ij,\text{real}} & \boldsymbol{I}_{ij,\text{imag}} & \boldsymbol{P}_{ij} & \boldsymbol{Q}_{ij} \end{bmatrix}^{\text{T}} \end{cases}$$
(8)

电气量测方程即为直角坐标系下的潮流计算 方程,须注意线路参数g_i、b_{ii}为温度的函数。

$$P_{ij} = f(\mathbf{V}, \boldsymbol{\theta}, T) = V_i^2(g_{ij} + g_c) - V_i V_j g_{ij} \cos \theta_{ij} - V_i V_j b_{ij} \sin \theta_{ij}$$
(9)

$$Q_{ij} = f(\mathbf{V}, \boldsymbol{\theta}, T) = -V_i^2(b_{ij} + b_c) - V_i V_j g_{ij} \sin \theta_{ij} + V_i V_j b_{ij} \cos \theta_{ij}$$
(10)

1.3 气象量测量及线路 HBE

国家电网公司在 2011 年已建立"数值天气预 报运行中心",针对电网调度和运行需求展开数值 天气预报研究。我国自主研发的新一代全球/区域 一体化数值预报系统(global/regional assimilation and prediction system, GRAPES)的气象预报精度和 水平分辨率大幅提高^[28],为我国社会生产和科学研 究提供了重要指导。目前,县级以上气象部门能够 获取小时级实时气象数据,为线路温度估计提供了 丰富的气象数据源。

根据 IEEE 738-2013^[29],架空输电线路载流量 与线路温度间的动态 HBE 可表示为:

$$mC_{p} \frac{dT_{t}}{dt} = I_{t}^{2}R(T_{t}) + q_{s}(t) - q_{c}(T_{t}) - q_{r}(T_{t})$$
(11)
$$R(T_{t}) = R_{ref}[1 + \alpha(T_{t} - T_{d})]$$
(12)

式中:m 为单位长度输电线路的质量; C_p 为输电线路材料的比热容;t 为时间; T_i 为输电线路在 t 时刻的温度; I_i 为输电线路在 t 时刻流过的电流值; $R(T_i)$ 为温度为 T_i 时,单位长度输电线路的交流电阻值; q_s,q_e,q_r 分别为单位长度输电线路的太阳辐射吸热量、对流换热量和辐射散热量,受风速、风向、环境温度和光照强度等气象因素影响,具体计算公式参见文献[29]; R_{ref} 为温度为 T_d 时的导线电阻值; α 为电阻温度系数; T_d 为线路参考温度。

由式(11)、式(12)可以看出,线路温度与线路 电流相关,进而影响线路电阻,而线路电流和电阻 又通过电气量测方程相关联。当线路发热与散热 达到动态平衡后,线路温度不再变化,此时忽略式 (11)中的温度微分项,则线路稳态 HBE 可表示为:

$$\Delta H = I_t^2 R(T_t) + q_s(t) - q_c(T_t) - q_r(T_t) = 0$$
(13)

式中: ΔH 为线路稳态 HBE。

然而,用电负荷随时变化,气象条件也可能在

短时间内大幅波动,因此在实际运行中线路稳态 HBE并不存在,不能简单忽略式(11)中的线路温度 微分项。只有考虑线路温度的动态变化过程,获得 温度的实时变化轨迹,才能有效指导电网的运行决 策。综上,最终建立的输电线路温度实时估计模型 可表示如下:

$$\begin{cases} z = h(x) + v \\ mC_{p} \frac{\mathrm{d}T_{i}}{\mathrm{d}t} = I_{i}^{2}R(T_{i}) + q_{s}(t) - q_{c}(T_{i}) - q_{r}(T_{i}) \end{cases}$$

$$(14)$$

传统的潮流计算和状态估计模型为非线性代 数方程组,主要包括功率平衡方程,通过牛顿法等 方法求解。文中提出的输电线路温度实时估计模 型为一组非线性代数-微分方程组,属于超定方程, 可以利用交替解法(如改进欧拉法、龙格库塔法等) 或联立解法(隐式梯形积分法)求解。

2 输电线路温度实时估计数学算法

2.1 基于交替解法的模型求解

假设 *t* 时刻的状态量 *x* 已准确收敛,根据 *t*+Δ*t* 时刻的线路电流估计值 $I_{t+\Delta t}$,推导 *t*+Δ*t* 时刻线路温 度 $T_{t+\Delta t}$ 的修正公式。为便于说明,首先将式(11)改 写为:

$$\frac{\mathrm{d}T_{t}}{\mathrm{d}t} = f(t, I_{t}, T_{t}) = \frac{1}{mC_{\mathrm{p}}} (I_{t}^{2}R(T_{t}) + q_{\mathrm{s}}(t) - q_{\mathrm{c}}(T_{t}) - q_{\mathrm{r}}(T_{t}))$$
(15)

分别利用改进欧拉法和四阶龙格库塔法对式 (15)进行离散差分化处理。

(1) 改进欧拉法推导。

$$\begin{cases}
T_{\iota+\Delta\iota}^{(0)} = T_{\iota} + \Delta t f(t, I_{\iota+\Delta\iota}, T_{\iota}) \\
T_{\iota+\Delta\iota} = T_{\iota} + \frac{\Delta t}{2} f(t, I_{\iota+\Delta\iota}, T_{\iota}) + \frac{\Delta t}{2} f(t, I_{\iota+\Delta\iota}, T_{\iota+\Delta\iota}^{(0)})
\end{cases}$$
(16)

式中: **Δ**t 为时间步长。

$$\begin{cases} T_{\iota+\Delta\iota} = T_{\iota} + \frac{\Delta t}{6} (k_1 + 2k_2 + 2k_3 + k_4) \\ k_1 = f(t, I_{\iota+\Delta\iota}, T_{\iota}) \\ k_2 = f\left(t + \frac{\Delta t}{2}, I_{\iota+\Delta\iota}, T_{\iota} + \frac{\Delta t}{2}k_1\right) \\ k_3 = f\left(t + \frac{\Delta t}{2}, I_{\iota+\Delta\iota}, T_{\iota} + \frac{\Delta t}{2}k_2\right) \\ k_4 = f\left(t + \Delta t, I_{\iota+\Delta\iota}, T_{\iota} + k_3\Delta t\right) \end{cases}$$
(17)

计算得到 T₁₊₁后再次利用式(12)修正线路电 阳,不断迭代以满足状态量x的精度要求。此外,令 后一时间步长的状态量迭代初值选取为前一步长 的收敛值,能够有效缩短迭代次数。如图2所示,上 述交替求解的计算思路中,输电线路温度实时估计 与传统 WLS 估计相互独立, 仅通过接口变量(即线 路电流和线路温度)相互联系,可以进行模块化设 计并封装,对现有程序的改动幅度小、计算效率高。 从计算精度而言,2种方法的局部截断误差依次减 小,分别具有二阶和四阶精度,后续将通过算例证 明2种方法均能够准确估计线路温度。

图 2 线路温度实时估计模块化设计 Fig.2 Modular design of line temperature real-time estimation

图 3 为线路温度实时估计算法流程,输入变量 包括电网拓扑和线路参数数据、各个时刻的 SCADA 和PMU电气量测数据以及环境温度、光照强度、风 速、风向等气象数据,WLS 状态估计与温度估计模 块相互独立。

2.2 基于联立解法的模型求解

首先利用隐式梯形积分法获得 t+Δt 时刻线路 温度 T₁₊₁的递推公式,然后将其作为伪量测量引入 传统状态估计模型,与电气量测量联立得到一组超 定代数方程组,利用 WLS 迭代求解。利用隐式梯形 积分法将式(15)改写为:

$$h_{\text{HBE}} = T_{t+\Delta t} - T_{t} - \frac{\Delta t}{2mC_{\text{p}}} (I_{t}^{2}R(T_{t}) + q_{\text{s}}(t) - q_{\text{c}}(T_{t}) - q_{\text{r}}(T_{t}) + I_{t+\Delta t}^{2}R(T_{t+\Delta t}) + q_{\text{s}}(t+\Delta t) - q_{\text{c}}(T_{t+\Delta t}) - q_{\text{c}}(T_{t+\Delta t}) - q_{\text{c}}(T_{t+\Delta t}) = 0$$
(18)

式中:h_{HBE}为利用隐式梯形积分法得到的线路动 态HBE。

将式(18)作为伪量测量引入温度估计模型,则 量测量和量测方程扩展为式(19),然后利用式(3) 迭代修正即可。

$$\begin{cases} \boldsymbol{z} = \begin{bmatrix} \boldsymbol{z}_{\text{SCADA}} & \boldsymbol{z}_{\text{PMU}} & \boldsymbol{0} \end{bmatrix}^{\text{T}} \\ \boldsymbol{h} = \begin{bmatrix} \boldsymbol{h}_{\text{SCADA}} & \boldsymbol{h}_{\text{PMU}} & \boldsymbol{h}_{\text{HBE}} \end{bmatrix}^{\text{T}} \end{cases}$$
(19)

图 3 基于交替解法的线路温度实时估计算法流程 Fig.3 Flow chart of real-time estimation algorithm for line temperature based on alternating approach

式中:h_{SCADA}、h_{PMU}分别为关于 SCADA、PMU 量测量 的量测函数。

线路温度实时估计使得量测量和状态量的种 类和数目均有所增加,信息矩阵 H 的维数随之变 化。推导H矩阵中部分元素的计算公式,H矩阵分 块如下:

$$\boldsymbol{H} = \frac{\partial \boldsymbol{h}(\boldsymbol{x})}{\partial \boldsymbol{x}} = \begin{bmatrix} \boldsymbol{H}_{11} & \boldsymbol{H}_{12} & \boldsymbol{H}_{13} \\ \boldsymbol{H}_{21} & \boldsymbol{H}_{22} & \boldsymbol{H}_{23} \\ \boldsymbol{H}_{31} & \boldsymbol{H}_{32} & \boldsymbol{H}_{33} \end{bmatrix} = \\ \frac{\partial \boldsymbol{h}_{\text{SCADA}}}{\partial \boldsymbol{h}_{\text{PMU}}} \frac{\partial \boldsymbol{V}}{\partial \boldsymbol{V}} \frac{\partial \boldsymbol{h}_{\text{SCADA}}}{\partial \boldsymbol{\theta}} \frac{\partial \boldsymbol{h}_{\text{SCADA}}}{\partial \boldsymbol{h}_{\text{PMU}}} \begin{bmatrix} 20 \end{bmatrix}$$
(20)
$$\frac{\partial \boldsymbol{h}_{\text{HBE}}}{\partial \boldsymbol{V}} \frac{\partial \boldsymbol{V}}{\partial \boldsymbol{h}_{\text{HBE}}} \frac{\partial \boldsymbol{\theta}}{\partial \boldsymbol{\theta}} \frac{\partial \boldsymbol{h}_{\text{HBE}}}{\partial \boldsymbol{\theta}} \frac{\partial \boldsymbol{h}_{\text{DMU}}}{\partial \boldsymbol{\theta}} \begin{bmatrix} 20 \end{bmatrix}$$

子矩阵 H_{11} 、 H_{12} 、 H_{21} 和 H_{22} 的元素即为传统 WLS 估计器模型,子矩阵 H13和 H23中元素的计算公 式同文献[30]一致,此处不再详述。子矩阵 H₃₃中 相关元素的计算公式如下:

$$\frac{\partial h_{\text{HBE}}}{\partial V_i} = \frac{\Delta t}{2mC_p} (g_{ij}^2 + b_{ij}^2) (2V_j \cos \theta_{ij} - 2V_i) R(T)$$
(21)

$$\frac{\partial h_{\text{HBE}}}{\partial \theta_i} = -\frac{\Delta t}{2mC_p} (g_{ij}^2 + b_{ij}^2) (2V_i V_j \sin \theta_{ij}) R(T)$$
(22)

$$\frac{\partial h_{\rm HBE}}{\partial T} = -1 + \frac{\Delta t}{2mC_{\rm p}} \left(\frac{\partial I^2}{\partial T} R(T) + \alpha R_{\rm ref} I^2 + \frac{\partial q_{\rm s}}{\partial T} - \frac{\partial q_{\rm c}}{\partial T} - \frac{\partial q_{\rm r}}{\partial T} \right)$$
(23)

$$\frac{\partial I^2}{\partial T} = \left(2g_{ij}\frac{\partial g_{ij}}{\partial T} + 2b_{ij}\frac{\partial b_{ij}}{\partial T}\right)\left(V_i^2 + V_j^2 - 2V_iV_j\cos\theta_{ij}\right)$$
(24)

须说明的是,量测量数目越多,系统量测冗余 度η越高,估计结果越精确。但只要量测冗余度 η≥1,文中提出的温度估计算法就能够实施,与系

2.3 基于二端口网络的输电线路分段

统其他部分是否可观测无关。

我国电网的输电线路传输距离长,覆盖区域 广,沿线气象条件复杂,这将导致沿线温度分布不 均匀。若线路采用集中参数模型,利用某点的气象 数据来代替整段线路的气象条件,势必会导致线路 温度存在误差。目前我国 GRAPES 气象预报的水 平分辨率已经达到5 km,依托国家电网电力气象实 验室,研发得到多尺度、高分辨率的线路预报产品, 能够完成"精确到局部一公里"的电力气象预报。 文献[31]提出基于机器学习的复杂地形下短期数 值天气预报误差分析与订正,以经纬度分割地理区 间,在此基础上,若能够同电网地理信息系统(geographic information system,GIS)数据共享,考虑架空 线路沿线气象分布差异性,将输电线路进行网格化 分段,就能实现更为精细化的线路温度实时估计。

图 4 为输电线路的 K 分段参数模型,其中 d_k 、 T_k 、 Z_k 、 Y_k 分别为第 k 段线路的长度、线路温度、串联 阻抗和并联导纳。

图 4 输电线路的 K 分段参数模型

Fig.4 Transmission line model with *K*-segments

根据二端口网络理论,第 k 段线路两端电压、电流的关系式可以表示为:

$$\begin{bmatrix} \dot{V}_{k+1} \\ \dot{I}_{k+1} \end{bmatrix} = \begin{bmatrix} \cosh(\gamma d_k) & -Z_{c}\sinh(\gamma d_k) \\ -\frac{1}{Z_{c}}\sinh(\gamma d_k) & \cosh(\gamma d_k) \end{bmatrix} \begin{bmatrix} \dot{V}_{k} \\ \dot{I}_{k} \end{bmatrix}$$
(25)

式中: $\gamma = \sqrt{Z_k Y_k}$,为线路的传播系数; $Z_c = \sqrt{Z_k/Y_k}$,为线路的特性阻抗。

同理,线路末端和首端电压、电流的关系式可 以利用二端口级联获得:

$$\begin{bmatrix} \dot{V}_j \\ \dot{I}_j \end{bmatrix} = \boldsymbol{\Pi}_1 \times \boldsymbol{\Pi}_2 \times \cdots \times \boldsymbol{\Pi}_K \begin{bmatrix} \dot{V}_i \\ \dot{I}_i \end{bmatrix}$$
(26)

式中: Π_k 为第 k 段线路的网络传输矩阵, k = 1, 2,…, K_{\circ}

在考虑线路分段后,相当于新增了 K-1 个虚拟 节点,新增节点的特点是有且仅有 2 个节点与之相 连,而且注入功率为 0。考虑线路分段后的温度实 时估计算法详细步骤如下。

(1) 输入各分段线路的额定参数和长度,为各段线路温度赋初始值 T_0 。

(2)读取该时刻*i*端和*j*端的电气量测值和气象量测值等数据。

(3)根据线路温度 T₀利用式(12)修正线路电阻,计算各段的传输矩阵。

(4) 利用线路 i 端量测量 $[\dot{V}_i \quad \dot{I}_i]^{\mathrm{T}}$ 计算分段 线路 k 的始端电压和电流,记作 $[\dot{V}_{i,k} \quad \dot{I}_{i,k}]^{\mathrm{T}}$;利用 线路 j 端量测量 $[\dot{V}_j \quad \dot{I}_j]^{\mathrm{T}}$ 计算分段线路 k 的末端 电压和电流,记作 $[\dot{V}_{i,k} \quad \dot{I}_{i,k}]^{\mathrm{T}}$ 。

(5)利用式(6)一式(10)计算线路电流和功率 伪量测量,根据交替解法或联立解法计算第 k 段线 路的温度。

(6) 计算前后 2 次迭代的温度差值的无穷范数
 || Δ**T**^(k) || _∞, 如果不满足收敛门槛, 返回步骤(3);
 反之, 进入下一时刻迭代。

由于只关注分段线路的温度,而并不关注虚拟 节点的电压,因此步骤(5)中状态量可以只选取该 段线路温度。另外,各段线路温度计算过程相互独 立,可并行计算,有效缩短计算耗时。

3 算例分析

3.1 IEEE 5 节点算例

3.1.1 算法有效性分析

首先通过一个简单 IEEE 5 节点算例来验证所 提算法的有效性。该算例中输电线路采用 LGJ-300/40 型导线,导体直径为 23.94 mm,线路 1-2、1-3、2-3 的长度分别为 60、60、100 km。系统基准容量 和基准电压分别为 100 MV·A 和110 kV,标幺值元件 参数见图 5,假设环境参数在研究时段内保持恒定。

图 5 IEEE 5 节点算例 Fig.5 IEEE 5-bus case

PMU 装置安装在 1 号节点、SCADA 装置安装 在 2 号、3 号节点,量测量如图 5 所示。设置总仿真 时间为 100 min,在 10 min 时 1 号节点发生负荷扰 动,有功功率由 0.8 p.u.上升至 1.2 p.u.,在 40 min 恢复至原值。采用电热潮流解^[32]作为量测量的真 实值,潮流计算结果见图 6。

Fig.6 Calculation results of power flow

采用达到稳态后的线路温度作为线路温度的 初始值,PMU和 SCADA 量测量分别在真实值的基 础上添加 0.1%和 2%的高斯白噪声,利用文中所提 算法(温度估计采用龙格库塔法)计算,迭代步长为 1 min,电压幅值、线路电流和线路温度估计结果如 图 7、图 8 所示。

当1号节点发生大的功率扰动后,系统中全部 节点电压、线路电流等电气量均会发生突变,1号节 点的电压下降最明显,降幅超0.02 p.u.。为保证受

扰动后1号节点的功率平衡,2台发电机需要增加 出力,线路1-2、1-3的电流将大幅增加,与图6仿真 结果一致。将图7与图6对比可知,文中所提算法 能够对节点电压与线路潮流进行有效估计,估计误 差为0.33%,而图7估计结果出现的纹波是量测量 存在噪声所致。图8为3条线路的温度真值与估计 值,可以看出,估计值与真值十分接近,平均误差仅 为0.6%,说明所提算法能够跟踪线路温度的变化轨 迹,实现温度的实时估计。此外,将图6和图8对比 可知,当系统发生功率扰动后,电气量的变化十分 迅速,经过很短时间即可达到新的稳态,而线路温 度变化具有滞后性且无法突变,需要经过较长时间 才能达到新的稳态。换言之,利用线路温度作为评 判线路过载的依据能够为调度部门争取宝贵的决 策时间。

3.1.2 3种温度估计方法的一致性分析

继续利用文中算法对 IEEE 5 节点算例进行 100 次估计,并与传统 WLS 估计器仿真误差进行 对比。

$$e = \sqrt{\frac{1}{Nn} \sum_{i=1}^{N} \sum_{j=1}^{n} \left(\frac{x_j - \bar{x}_{ij}}{x_j}\right)^2}$$
(27)

式中:e为估计误差;N为量测数据组数;n为节点数 目; x_j 为节点j的状态量真实值; \bar{x}_{ij} 为用第i组量测 量得到的节点j的状态量估计值。

表1为不同温度估计方法的估计结果比较,其 中 e_v、e_o、e_r分别为电压幅值、电压相角和线路温度 的估计误差。如表1所示,相较于传统 WLS 估计 器,考虑线路温度后电压状态量的估计误差从 1.59%下降至0.33%。比较迭代次数和计算耗时可 知,引入线路温度不会影响算法的收敛性,每步温 度迭代 2~3 次即可收敛,虽然计算耗时有所增加, 但仍然满足在线计算需求。此外,文中所提出的3 种温度实时估计算法的估计结果基本相同,均能够 精确求解动态 HBE 微分方程,而隐式梯形积分法的 计算耗时略低于改进欧拉法和龙格库塔法。

Table 1 Results comparison of three SE methods						
性能参数		传统 WLS 估计方法	考虑线路温度的估计方法			
			改进 欧拉法	龙格 库塔法	隐式梯形 积分法	
e _V /%		1.59	0.34	0.33	0.34	
$e_{ heta}/\%$		5.72	1.85	1.83	1.80	
e/%			0.62	0.60	0.62	
迭代	状态估计	3	3	3	2.98	
次数	温度估计		2.97	3.05	2.98	
计管耗时/。		0.29	0.45	0.54	0.42	

表 1 3 种方法的估计结果比较

3.1.3 考虑线路分段后的算法性能

对上述算例进行修改以验证考虑线路分段后 的算法性能,进行线路分段可依据 GRAPES、国家电 网电力气象实验室提供的高分辨率气象数据和电 网 GIS 数据。如图 9 所示,1 号至 5 号节点为原算 例的节点,对线路 1-2、1-3 和 2-3 进行等长度分段来 模拟不同的气象条件,每条线路分为 3 段(只标注 了中间段的阻抗),新增 6 号至 11 号虚拟节点和 9 条分段线路,将系统分为 5 个气象量测区域,即区域 I—区域V。模拟 1 h 的负荷及气象变化,探究各 段线路的温度变化情况,假设 PMU 配置在 1 号至 3 号节点。

图 9 修改后的 5 节点算例 Fig.9 Modified 5-bus case

图 10 为 5 个气象量测区域 1 h 的环境温度和 风速数据,图 11 为线路 1-2 分段后的 3 段线路(2-7、7-6、6-1)温度变化轨迹,表 2 为分段后新增线路 与原线路的估计温度对比。由图 11 可知,3 段线路 的温度变化轨迹存在显著差异,线路 7-6 的平均温 度最高,最高点温度约为 38.35 ℃;线路 2-7 的平均 温度最低,最高点温度约为 31.94 ℃。

由图 11 和表 2 可知,线路 2-7、7-6 的温度在仿 真 13 min 时差值最大,达到 14.58 ℃、相对温差达到 61.9%;线路 6-1、7-6 的温度在仿真 43 min 时差值最

图 10 5 个气象量测区域的环境数据

图 11 线路 1-2 分段后的 3 段线路温度变化轨迹 Fig.11 Temperature change trajectory of the three sections after line segmentation 1-2

表 2	计及线路分段后各段线路的估计温度对比
Table 2	Comparison of estimated temperatures for
each sect	on after taking into account line segmentation

分段后 新增线路	与首端线路比较		与末端线路比较	
	最大 温差/℃	相对 温差/%	最大 温差/℃	相对 温差/%
7-6	3.37	9.60	14.58	61.90
8-9	3.85	12.05	7.44	25.74
10-11	5.37	28.51	3.46	13.26

大,达到 3.37 ℃、相对温差达到 9.6%。因此,若不 考虑线路分段,仅利用节点 1 或 2 处的气象量测数 据代替整条线路进行温度实时估计,将使得估计误 差显著增大,不利于做出正确的调度运行决策。

图 12 为考虑分段后各条线路的温度变化曲线, 同一气象区域内各条线路的温度变化轨迹类似,如 线路 2-7 和 2-10、线路 3-9 和 3-11,而不同线路间的 温度差异主要是线路载流量不同导致。表 3 为计及 线路分段后的算法估计结果,由表 3 可知,每条线路 的 PMU 量测量数目为 12。而增加的 2 个虚拟节点 会增加 6×4 个伪量测量,再加上 3 个 HBE 伪量测, 总共有 27 个虚拟量测量。考虑线路分段后,温度估 计误差基本不变,仍能准确刻画线路温度变化轨 迹,计算耗时略微增加。

图 12 IEEE 5 节点算例考虑线路分段的温度估计值

Fig.12 Estimated temperature of lines considering segmentation in IEEE 5-bus case

表3 计及线路分段后的算法估计结果

Table 3 Estimated results of the algorithm considering line segments

性能参数		线路			
		1-2	1-3	2-3	
量测量数目		12	12	12	
虚拟节点伪量 测量数目		6×4+3	6×4+3	6×4+3	
$e_V / \%$		0.23	0.07	0.06	
e _θ ∕%		0.44	0.21	0.09	
	分段1	0.279	0.245	0.270	
$e_T/\%$	分段 2	0.153	0.146	0.194	
	分段 3	0.472	0.135	0.102	
计算耗时/s		0.57	0.60	0.58	

3.2 IEEE 39 节点算例

3.2.1 时变环境参数对估计结果的影响

利用 IEEE 39 节点算例研究时变环境参数对估 计结果的影响。选取 2022 年 5 月河北某地区典型 日的 1 min 级气象与负荷数据,如图 13、图 14 所示。

假设该算例中各节点负荷均按照图 14 变化,选 取不同线路,在线路首末两端均安装 PMU 和

图 14 某地区典型日负荷数据

Fig.14 Typical daily load data of a certain area SCADA 装置,迭代步长为 1 min,得到电压和线路温度估计结果,如表 4 和图 15、图 16 所示。

表 4 所提算法的估计误差和计算效率

Table 4 Estimated errors and efficiency of the proposed algorithm

线路编号	$e_T/\%$	迭代次数	计算耗时/s
1-2	0.151	2	1.690
22-23	0.105	2	1.716
26-28	0.222	2	1.612

Fig.15 Voltage of several nodes in IEEE 39-bus case

图 15 以 3 号、10 号和 17 号节点为例,给出了 电压真值和估计值。可以看出,节点的电压变化趋 势基本一致,在 11 时和 19 时左右降低至最小值,与 负荷变化规律呈负相关,电压幅值和相角平均估计 误差仅为 0.13% 和 1.95%。图 16 为 3 条线路的温 度变化轨迹,可以看出,计及时变环境后,文中算法 同样能够准确估计线路温度,估计误差小于 0.3%, 同负荷曲线的相关程度较高。24 h 共有 1 440 个时 间断面,因此程序须执行 1 440 次,共耗时 1.7 s,平 均每时步迭代次数 2 次,程序计算效率较高。

为进一步验证所提算法的有效性,将现有文献 中基于线性回归模型^[33]、人工神经网络模型^[33]、内 点法非线性优化模型^[34]和假设线路为热平衡稳态

图 16 若干线路的温度实际值与估计值

Fig.16 Actual and estimated temperature of several lines 下的联合温度估计算法^[30]进行仿真比较,结果如表 5 所示。由于考虑了环境条件的动态变化,而且是 基于理论模型推导得出,相较于基于数据驱动的数 值模拟方法而言,文中所提算法的实时温度估计性 能有所提高,估计误差从 1.32%下降至 0.15%,计算 耗时增加较少。

表 5 不同算法下线路 1-2 的估计误差和计算耗时 Table 5 Estimation errors and computational time of different algorithms for line 1-2

算法	是否可算温度 变化轨迹	e _T /%	计算耗时/s
文中龙格库塔法	是	0.15	1.69
多元线性回归模型	是	1.32	1.44
人工神经网络模型	是	0.28	4.38
非线性优化模型	否	0.60	5.34
联合温度估计模型	否	0.32	0.47

3.2.2 多源数据采样频率不一致对估计结果的 影响

目前,我国基于 GRAPES 的气象数值预报更新 频率已经实现分钟级、空间分辨率可精细至百米 级^[28],但相较于电气量测量而言,气象数据的变化 速率慢得多,实际应用过程中气象部门更新数据的 频率可能大于分钟级。为了研究多源数据采样频 率不一致对估计结果的影响,假设气象数据的采样 频率从1 min 递增至 120 min,2 次采样之间的气象 数据保持不变,对线路 1-2 进行温度估计,统计结果 如表6和图17所示。

表 6 数据上传速率对估计结果的影响 Table 6 Impact of data update rate to estimated results

数据采样 周期/min	e _V /%	$e_{ heta}/\%$	e _T /%	线路 1-39 最高温度/℃
1	0.13	1.95	0.15	33.014
10	0.13	1.98	0.28	33.336
20	0.13	2.07	0.78	33.373
30	0.13	2.27	1.39	32.631
60	0.13	2.64	2.88	32.632
120	0.13	2.96	4.85	32.114

可以看出,随着数据采样周期的增大,电压幅 值估计结果基本不变,电压相角和线路温估计误差 随之增大。根据图 17,当气象数据的采样频率从 1 min增大至 120 min 时,线路温度的相对估计误差 从 0.15%增大至 4.85%,绝对估计误差为 0.9 ℃,仍 处于合理的误差范围内,满足工程应用实际,说明 文中算法在实际应用时可以适当降低气象数据的 采样频率来提高仿真效率。

3.3 工程实际线路算例

目前,基于无人机、智能传感器、移动作业终端 等多源数据的输电线路智慧管控平台已经在地市 级供电企业部署应用,实现杆塔倾斜、导线舞动、导 线外破等状态实时监测,并利用安装于导线表面和 耐张线夹处的高精度光纤传感器采集导线温度。 利用某地市公司实际运行的 220 kV 坊向线量测数 据验证文中所提算法的有效性,数据日期为 2024 年 1月23日。线路温度取自平台的传感器数据,气象 数据来自平台微气象监测装置,包括环境温度、风 速、光照强度等;电压、电流等电气量数据取自用电 信息采集系统,采样频率均为 15 min。仿真结果如 图 18、图 19 所示。

可以看出,相较于利用传感器直接测量线路温 度而言,文中所提算法基本能够跟踪线路温度变化

图 18 1日内线路温度实际量测值和估计值

Fig.18 Actual measured and estimated line temperature of one day

图 19 估计温度散点图和估计误差直方图 Fig.19 Scatter plot of estimated temperature and histogram of estimated error

轨迹,相对估计误差为 6.51%,最大误差为 0.79℃; 估计值与量测值呈显著正相关,估计误差大致呈 N(-0.02,0.0653²)的正态分布,置信度为 94.38%。 相较于模拟算例,实际线路的温度估计误差偏大, 这是因为气象数据、温度数据和电气量测量等均存 在较大不确定度。

4 结论

输电线路温度是评价线路输送能力的重要指标,应用线路温度进行动态增容,能够大幅提高输 电线路的经济效益。文中基于动态热平衡方程,建 立输电线路温度实时估计的数学模型,提出基于交 替解法和联立解法的温度估计方法,并利用二端口 网络将输电线路分段,实现了更为精细化的线路温 度估计。仿真结果表明:

(1)在电网稳态、出现扰动、环境时变等情形下,所提算法均能准确跟踪线路温度变化轨迹,电压和线路温度估计误差小于0.5%,估计精度高。

(2)所提算法仅利用本线路量测量即可估计线路温度,与系统其他部分是否可观测无关,可适当降低气象数据的采样频率以提高计算效率。

(3)考虑线路沿线气象条件的差异性,基于线路分布参数模型利用二端口网络进行分段,能准确估计各段线路的实时温度轨迹,计算耗时较少、效

率高。后续将结合数值气象预报和电网 GIS 系统对输电线路更加科学、精细化的分段进行详细研究。

参考文献:

[1] 王晓彬,孟婧,石访,等.煤电与清洁电源协同演进优化模型 及综合评价体系研究[J].电力系统保护与控制,2022,50 (13):43-52.

WANG Xiaobin, MENG Jing, SHI Fang, et al. An optimization model and comprehensive evaluation system for the synergistic evolution of coal-fired power plants and clean power sources [J]. Power System Protection and Control, 2022, 50 (13): 43-52.

[2] 霍沫霖,陈爱康,刘智超,等. 多约束条件下城市能源规划前 期研究方法及案例分析[J]. 全球能源互联网,2022(6): 574-582.

HUO Molin, CHEN Aikang, LIU Zhichao, et al. Methods and case study for preliminary research of urban energy planning under multiple constraints[J]. Journal of Global Energy Interconnection, 2022(6):574-582.

- [3] 李子新,王硕,赵隆,等. 多参数影响的导线热稳监测及动态 增容研究[J]. 智慧电力,2022,50(12):100-106.
 LI Zixin, WANG Shuo, ZHAO Long, et al. Thermal stability monitoring of conductor and dynamic line rating considering effects of multiple parameters [J]. Smart Power, 2022, 50(12):100-106.
- [4] 陈春宏,许智贤,曾衍淇,等.架空导线动态增容的环境测量
 解耦模型及其实验验证[J].电力科学与技术学报,2023,38
 (6):206-214.

CHEN Chunhong, XU Zhixian, ZENG Yanqi, et al. An environmental measurement decoupling model for dynamic capacity increasing of overhead conductors and experimental validation [J]. Journal of Electric Power Science and Technology, 2023, 38 (6):206-214.

[5] 严伯伦,谢红刚,杨明. 微气象分析与载流量预测结合的动态线路增容方法[J]. 电力系统及其自动化学报,2022,34 (12):137-144.

YAN Bolun, XIE Honggang, YANG Ming. Dynamic line rating method combining micrometeorological analysis and ampacity forecasting[J]. Proceedings of the CSU-EPSA, 2022, 34(12): 137-144.

- [6] JIANG C, XIE J L, ZHAO J, et al. A novel high-voltage transmission line joint temperature monitoring system using hybrid communication networks [J]. IEEE Access, 2021, 9: 109478-109487.
- [7] CHEN K, YUE Y, TANG Y J. Research on temperature monitoring method of cable on 10 kV railway power transmission lines based on distributed temperature sensor [J]. Energies, 2021,14(12):3705.
- [8] 马国明,王思涵,秦炜淇,等. 输电线路运行状态光纤感知研究与展望[J]. 高电压技术,2022,48(8):3032-3047.
 MA Guoming, WANG Sihan, QIN Weiqi, et al. Research and prospect in optical fiber sensing of transmission line operating conditions[J]. High Voltage Engineering, 2022,48(8):3032-

3047.

[9] 杨芳,唐小亮,尹文阔,等. 基于多参量分布式光纤传感的架 空输电线路风振监测分析[J]. 电力系统保护与控制,2022, 50(11):169-177.

YANG Fang, TANG Xiaoliang, YIN Wenkuo, et al. Analysis of transmission line wind vibration monitoring based on a multi parameter distributed optical fiber sensor[J]. Power System Protection and Control, 2022, 50(11):169-177.

[10] 王敏学,李黎,周达明,等.分布式光纤传感技术在输电线 路在线监测中的应用研究综述[J].电网技术,2021,45 (9):3591-3600.

WANG Minxue, LI Li, ZHOU Daming, et al. Overview of studies on application of distributed optical fiber sensing technology in online monitoring of transmission lines [J]. Power System Technology, 2021, 45(9):3591-3600.

[11] 徐志钮,樊明月,赵丽娟,等. 基于分布式光纤传感的输电
 线路温度和应变快速测量方法[J]. 高电压技术,2020,46
 (9):3124-3134.

XU Zhiniu, FAN Mingyue, ZHAO Lijuan, et al. Fast measurement method for temperature and strain of transmission lines based on distributed optical fiber sensor[J]. High Voltage Engineering, 2020, 46(9): 3124-3134.

[12] 翟春雨,刘泰蔚,田晓云,等. 温度对套管环氧胶浸纸绝缘 频域介电响应的影响研究[J]. 电瓷避雷器,2023(6):196-201,208.

ZHAI Chunyu, LIU Taiwei, TIAN Xiaoyun, et al. Effects of temperature environment on the dielectric properties of epoxy/ paper composites for bushing[J]. Insulators and Surge Arresters, 2023(6):196-201,208.

[13] 何宁辉,周秀,马波,等. 基于神经网络和温度特性曲线的 电缆故障率估计[J]. 电力科学与技术学报,2022,37(4): 169-174.

HE Ninghui, ZHOU Xiu, MA Bo, et al. Cable failure rate estimation based on neural network and temperature characteristic curve[J]. Journal of Electric Power Science and Technology, 2022, 37(4):169-174.

[14] 刘永莉,熊豪文,肖衡林,等. 基于有限元的综合管廊电缆 温度场分布研究[J]. 电力科学与技术学报,2022,37(6): 82-90.

LIU Yongli, XIONG Haowen, XIAO Henglin, et al. Study on temperature field distribution of pipe gallery cable based on finite element method[J]. Journal of Electric Power Science and Technology, 2022, 37(6):82-90.

- [15] 陈芳,查浩,韩学山,等. 基于半参数平差模型的输电线路 温度估计[J]. 电力系统自动化,2015,39(21):81-86,112.
 CHEN Fang,ZHA Hao,HAN Xueshan,et al. Transmission line temperature estimation based on semi-parametric adjustment model[J]. Automation of Electric Power Systems, 2015, 39 (21):81-86,112.
- [16] 祖玮,应展烽,徐冰,等. 计及线路气象随机性的电网电热 协调潮流模型[J]. 科学技术与工程, 2021, 21(5):

1849-1856.

ZU Wei, YING Zhanfeng, XU Bing, et al. Power flow model considering electro-thermal coupling under random weather conditions on the line [J]. Science Technology and Engineering, 2021, 21(5):1849-1856.

[17] 王艳玲,莫洋,韩学山,等.考虑气象时空分布特性的输电
 线路模型和分析方法[J].电工技术学报,2020,35(3):
 636-645.

WANG Yanling, MO Yang, HAN Xueshan, et al. Transmission line model and analysis method considering the time and space distribution characteristics of meteorology [J]. Transactions of China Electrotechnical Society, 2020, 35(3):636-645.

- [18] CECCHI V, KNUDSON M, MIU K R. System impacts of temperature-dependent transmission line models[J]. IEEE Transactions on Power Delivery, 2013, 28(4):2300-2308.
- [19] BE A, GÁLL V, KANÁLIK M, et al. Calculation of the overhead transmission line conductor temperature in real operating conditions[J]. Electrical Engineering, 2021, 103(2):769-780.
- [20] 杨园园. 基于分布式参数的输电线路动态热定值的计算方法[D]. 济南:济南大学,2020.
 YANG Yuanyuan. Calculation method of dynamic thermal setting value of transmission line based on distributed parameters[D]. Jinan; University of Jinan,2020.
- [21] 于尔铿. 电力系统状态估计[M]. 北京:水利电力出版 社,1985.

YU Erkeng. Power system state estimation [M]. Beijing: China Water Power Press, 1985.

- [22] 魏新迟,秦龙宇,方陈,等. 配电网同步相量测量技术与应用综述[J]. 电力建设,2023,44(5):13-22.
 WEI Xinchi, QIN Longyu, FANG Chen, et al. Review of the synchronous measurement technology and its application in distribution networks[J]. Electric Power Construction, 2023, 44 (5):13-22.
- [23] 罗深增,李银红,石东源. 广域测量系统可观性概率评估及 其在 PMU 优化配置中的应用[J]. 电工技术学报,2018,33
 (8):1844-1853.

LUO Shenzeng, LI Yinhong, SHI Dongyuan. Wide area monitoring system observability probabilistic evaluation and it's application in optimal PMU placement [J]. Transactions of China Electrotechnical Society, 2018, 33(8):1844-1853.

- [24] 于学良.考虑不确定性的电力系统状态估计及 PMU 序贯 配置[D].济南:山东大学,2018.
 YU Xueliang. Uncertainties consideraison in power system state estimation and PMU sequential deployment[D]. Jinan: Shandong University,2018.
- [25] 马睿聪,刘福锁,曹永吉,等. 电力系统频率动态与功角振 荡的耦合特性分析[J]. 电力工程技术,2023,42(4): 102-112.

MA Ruicong, LIU Fusuo, CAO Yongji, et al. Coupling characteristic analysis of power system frequency dynamic and power angle oscillation[J]. Electric Power Engineering Technology, 2023,42(4):102-112.

- [26] 杨睿,高红均,刘俊勇. 基于有限 PMU 配置的配电网故障 定位[J]. 电力自动化设备,2022,42(4):138-145.
 YANG Rui, GAO Hongjun, LIU Junyong. Distribution network fault location based on limited PMU configuration[J]. Electric Power Automation Equipment,2022,42(4):138-145.
- [27] CHAKRABARTI S, KYRIAKIDES E, LEDWICH G, et al. Inclusion of PMU current phasor measurements in a power system state estimator [J]. IET Generation, Transmission & Distribution, 2010, 4(10):1104.
- [28] 沈学顺,王建捷,李泽椿,等. 中国数值天气预报的自主创新发展[J]. 气象学报,2020,78(3):451-476.
 SHEN Xueshun, WANG Jianjie, LI Zechun, et al. Independent innovation and development of numerical weather forecast in China[J]. Acta Meteorologica Sinica,2020,78(3):451-476.
- [29] IEEE standard for calculating the current temperature relationship of bare overhead conductors: IEEE standard 738-2013
 [S]. New York, NY, USA: Transmission and Distribution Committee, 2013.
- [30]于学良,张恒旭,王孟夏.考虑线路温度的电网状态估计方法[J].中国电机工程学报,2018,38(9):2561-2570.
 YU Xueliang,ZHANG Hengxu,WANG Mengxia. An algorithm for power system state estimation considering line temperature [J]. Proceedings of the CSEE,2018,38(9):2561-2570.
- [31] 任萍,陈明轩,曹伟华,等. 基于机器学习的复杂地形下短 期数值天气预报误差分析与订正[J]. 气象学报,2020,78 (6):1002-1020.

REN Ping, CHEN Mingxuan, CAO Weihua, et al. Error analysis and correction of short-term numerical weather prediction under complex terrain based on machine learning [J]. Acta Meteorologica Sinica, 2020, 78(6):1002-1020.

- [32] 王孟夏,韩学山,蒋哲,等. 计及电热耦合的潮流数学模型 与算法[J]. 电力系统自动化,2008,32(14):30-34.
 WANG Mengxia,HAN Xueshan,JIANG Zhe, et al. Power flow model and algorithm considering electro-thermal coupling[J].
 Automation of Electric Power Systems,2008,32(14):30-34.
- [33] STERC T, FILIPOVIC-GRCIC B, FRANC B, et al. Methods for estimation of OHL conductor temperature based on ANN and regression analysis [J]. International Journal of Electrical Power & Energy Systems, 2023, 151:109192.
- [34] RAKPENTHAI C, UATRONGJIT S. Power system state and transmission line conductor temperature estimation [J]. IEEE Transactions on Power Systems, 2017, 32(3):1818-1827.

作者简介:

于学良(1993),男,硕士,工程师,从事电 力系统运行与控制相关工作(E-mail;yuxueliang01@ sina.com);

方立华(1992),男,硕士,工程师,从事电 力系统配电自动化相关工作;

曹永吉(1992),男,博士,副研究员,研究 方向为电力系统稳定分析与控制、可再生能源 并网及储能技术应用。

Real-time segmented temperature estimation of transmission lines based on measurement and heat balance equation

YU Xueliang¹, FANG Lihua¹, CAO Yongji², ZHANG Hengxu³, LI Shao⁴, LI Changgang³

(1. State Grid Weifang Power Supply Company of Shandong Electric Power Company, Weifang 261000, China;

2. Academy of Intelligent Innovation, Shandong University, Jinan 250101, China;

3. School of Electrical Engineering, Shandong University, Jinan 250061, China;

4. State Grid Qingzhou Power Supply Company of Shandong Electric Power Company, Qingzhou 262500, China)

Abstract: Transmission line temperature is an important indicator to evaluate the capacity of transmission lines, which can be used as the basis for dynamic capacity expansion and guide the real-time scheduling decision of power grid. Based on the measurement and heat balance equations, a real-time estimation model of transmission line temperature is proposed. The line temperature is taken as a state variable and the dynamic heat balance equation is introduced as a pseudo measurement. The heat balance equation is discretized, and then the alternating approach and simultaneous approach are used to solve the differential-algebraic equations. Considering the complexity of meteorological condition along the long transmission line, a more refined method for segmented temperature estimation of transmission lines is proposed by introducing virtual nodes into the segmented transmission lines. A two-port network equation is used to calculate the measurement of virtual nodes. The effectiveness of the proposed algorithm is verified by the improved IEEE 5-bus, IEEE 39-bus systems and a real line. The results show that the proposed algorithm can adapt to various scenarios and estimate line temperatures quickly. With the segmentation of lines, it is possible to accurately estimate the real-time temperature trajectory of each line section, which shows strong practicality.

Keywords: transmission lines; temperature estimation; heat balance equation; measurement device; line segmentation; implicit trapezoidal integration method

234

