DOI:10.12158/j.2096-3203.2024.04.010

GIS 不同耦合方式下注入脉冲的加权 IMF 局放信号等效性

董冰冰¹,李康¹,高常胜¹,刘贯科²,戴喜良²,夏云峰³ (1.合肥工业大学电气与自动化工程学院,安徽合肥 230009; 2.广东电网有限责任公司东莞供电局,广东 东莞 523008; 3.海南电网有限责任公司输电运检分公司,海南 海口 570100)

摘 要:注入脉冲模拟局放是气体绝缘金属封闭组合电器(gas insulated switchgear, GIS)特高频(ultra high frequency, UHF)局放监测装置功能校验的主要方法,由于现场校验脉冲注入的耦合方式不同,模拟局放与实际局放等效性规律尚不明确,无法保证监测装置功能校验的有效性。文中首先建立126 kV GIS 典型局放缺陷(尖端、悬浮、绝缘子气泡)和内/外置式脉冲注入 UHF 局放检测平台,并对 UHF 信号有效脉冲进行归一化提取;接着提出基于经验模态分解的加权本征模函数(intrinsic mode functions, IMF)信号处理方法,通过计算局放信号欧式距离平均值和最大值表征其等效性;最后与常规信号偏差法进行对比验证。研究表明,相较于常规信号等效性分析方法,加权 IMF 法可有效解决 UHF 信号波形局部差异较大的问题;使用内置传感器脉冲注入的模拟局放信号与悬浮局放信号等效性最高,局放信号的欧式距离平均值 M_a 和最大值 M_a 分别为 3.82%和 10.28%。因此,UHF 监测装置功能校验可采用恒定参数注入脉冲代替悬浮缺陷,且模拟局放可优先选择内置 UHF 传感器注入脉冲。文中研究可为 UHF 局放监测装置功能校验的脉冲注入方法提供参考。

关键词:注入脉冲;局放模拟;经验模态分解;信号等效性分析;本征模函数(IMF);欧式距离
 中图分类号:TM854
 文献标志码:A
 文章编号:2096-3203(2024)04-0095-09

0 引言

特高频(ultra high frequency,UHF)检测方法由 于灵敏度高、抗干扰能力强,具有局放模式识别能 力和放电源定位等优点,已经广泛应用于气体绝缘 金属封闭组合电器(gas insulated switchgear,GIS)局 放状态监测^[1-3]。UHF局放在线监测装置可有效预 警 GIS局放缺陷,但目前现场已安装 UHF 在线监测 装置常出现局放检测失效问题,亟需提高装置功能 检测的有效性。

为校验 UHF 局放在线监测装置功能有效性,文 献[4]首次提出了脉冲注入模拟局放法,即利用陡 脉冲发生器向 UHF 传感器注入陡脉冲信号产生电 磁波信号,实现局放 UHF 信号的等效模拟。但 UHF 局放监测装置功能现场校验中,由于 GIS 已安装的 内置 UHF 传感器无法移动,无法灵活改变模拟局放 脉冲注入位置^[5-8]。故采用外置式传感器^[9]实现局 放源模拟的可移动性和校验检测的灵活性,主要分 为 GIS 的带浇筑口金属屏蔽和无金属屏蔽的敞开式 盆式绝缘子边缘处进行脉冲注入,其中内置注入脉 冲模拟局放等效性相关研究较多,目前浇筑口式脉 冲注入与内置注入和实际局放等效性研究尚未见

收稿日期:2024-01-28;修回日期:2024-03-11

基金项目:国家自然科学基金资助项目(52107142);高等学校学科创新引智计划资助项目(BP0719039)

相关文献报道。

为分析脉冲注入模拟局放 UHF 信号等效性,国 内外学者普遍采用 UHF 检测信号的频谱分布相似 度^[10-13]和幅值衰减^[14]表征脉冲注入仿真模型模拟 实际局放的等效性规律,定性验证了脉冲注入模拟 局放的可行性。为定量分析脉冲注入模拟局放 UHF 信号的等效性, 文献 [15-16] 将脉冲注入模拟 局放与实际局放信号的偏差的平均值、最大值和方 差以及信号互相关函数作为分析信号等效性的主 要指标。文献[17]采用小波包对比分析了 UHF 局 放信号在不同频段的传播规律,得出脉冲注入与悬 浮放电频谱更为相似,较好地解决了 UHF 局放信号 的频谱等效性分析问题。但以上方法主要针对 GIS 不同测量点的 UHF 信号频谱以及衰减特性的等效 性分析,而对于受注入脉冲能量、参数、耦合方式影 响的 UHF 全脉冲信号及受定位功能校验要求的局 放时域特征[18-23]均难以满足等效性分析要求,无法 保证监测装置功能校验的有效性。因此,为保证 UHF 局放监测装置功能校验有效性,须研究不同耦 合方式下注入脉冲及局放缺陷 UHF 信号的等效性 规律。

为研究不同耦合方式下注入脉冲及实际局放 缺陷的 UHF 信号等效性规律,文中首先建立126 kV GIS 局放 UHF 信号校验试验平台,采集典型局放缺 陷(尖端、悬浮、绝缘子气泡)和不同耦合方式下注

电力工程技术

入脉冲下的 UHF 信号样本,然后提出基于经验模态 分解的加权本征模函数(intrinsic mode functions, IMF)的 UHF 信号等效性分析方法,并与常规方法 等效性分析结果进行对比,验证文中方法的有效 性,最后分析不同耦合方式下注入脉冲模拟局放与 不同局放缺陷的 UHF 信号等效性规律。文中研究 可为 UHF 局放监测装置中脉冲注入位置的选取方 法提供参考。

1 试验平台及方法

1.1 126 kV GIS 局放 UHF 检测平台

为分析脉冲注入模拟局放与实际局放 UHF 信 号等效性,文中综合考虑了现场实际尖端、悬浮和 绝缘子气泡典型缺陷类型及等效性,建立了包括 126 kV GIS 局放试验装置、局放缺陷、模拟局放脉冲 注入系统和 UHF 局放检测系统在内的 UHF 局放检 测平台,主要包括以下部分:

(1) 126 kV GIS 局放试验装置。126 kV GIS 局 放试验平台主要包括铠装试验变压器(避免干扰局 放检测)、水平盆式绝缘子测试单元,如图 1 所示。 其中,铠装试验变压器最高施加电压为 120 kV,GIS 中的 SF₆气体压力为 0.4 MPa,加压方式为阶梯升压 法,升高电压至出现稳定的 UHF 局放信号时,保持 该电压值,进行局放检测及数据采集。

(2)局放缺陷及模拟局放脉冲注入系统。为模拟 GIS 内部典型缺陷,文中自制了尖端、悬浮、绝缘 子气泡 3 种典型局放缺陷,如图 2 所示。模拟方法 详述如下。

尖端缺陷:将直径 1 mm、长度 8 mm、尖端为曲 率半径 0.75 mm 倒角的细铜丝固定在高压端均压罩 边缘处,并与高压电极良好接触,以模拟尖端放电。

悬浮缺陷:将2个直径1 mm、长度8 mm、尖端

图 2 3 种 GIS 内部典型局放缺陷 Fig.2 Three typical partial discharge defects in GIS

为曲率半径 0.75 mm 倒角的铁针通过绝缘圈固定, 可调针尖距离为 2 mm,放置在图 1 中局放缺陷布置 单元的盆式绝缘子上,距离高压电极约为 1 cm 处, 以模拟悬浮缺陷。

绝缘子气泡缺陷:采用经 X 射线检测验证的气 泡缺陷直径尺寸为 1 mm 的球体,模拟其内部气泡 缺陷。

为验证局放缺陷模型设置有效性,试验前采用 已校核功能的 UHF 在线监测装置分别对不同局放 缺陷的 UHF 信号进行局放相位分布(phase resolved partial discharge, PRPD)图谱分析^[22],局放监测装置 诊断结果与缺陷设置类型一致,局放验证了对应缺 陷的 UHF 检测有效性,所测信号为对应缺陷的局放 信号,而非外界干扰信号的影响。

用高性能任意信号发生器(采样率 8 GS/s,8 位 D/A 分辨率)向 UHF 传感器注入恒定参数的双指 数脉冲信号模拟 GIS 内部局放,如图 3 所示,其中注 入双指数脉冲信号^[5,14]半峰值时间 *T*_b为 20 ns;*t*₁、*t*₂ 分别为信号到达 30%、90%峰值的时刻;波前时间 *T*_f 为 0.5 ns;峰值 *U*_m为 2 V。模拟局放试验中,UHF 局 放检测平台不加电压。根据 UHF 在线监测装置现 场校验情况^[19],不同耦合方式分别通过内置和外置 UHF 传感器注入脉冲信号实现,其中外置 UHF 传 感器注入分为无金属屏蔽敞开式的盆式绝缘子边 缘注入和带金属屏蔽绝缘子浇筑口注入。

图 3 注入双指数脉冲信号

(3) UHF 局放检测系统。UHF 局放检测系统

包含 2 个 UHF 传感器,检测 UHF 传感器①布置在 金属屏蔽箱内无金属屏蔽的敞开式盆式绝缘子边 缘处,采用皮筋将传感器接收信号面紧贴盆式绝缘 子边缘;检测 UHF 传感器②布置在金属屏蔽箱外。 局放检测 UHF 传感器测量频带为 250~800 MHz,增 益为 50 dB,采用高速示波器测量 UHF 局放信号。

1.2 试验方法

为避免局放信号采集过程中遭受外界噪声干 扰,文中通过在典型缺陷布置单元外设置金属屏蔽 箱,屏蔽外界干扰信号。由于 UHF 传感器①设置在 金属屏蔽箱内, UHF 传感器②设置在金属屏蔽箱 外,当存在外界干扰信号时,UHF 传感器②检测信 号会受到干扰,而 UHF 传感器①由于金属屏蔽箱的 屏蔽作用,不受干扰信号影响,只会接收到 GIS 内部 局放信号,因此,可通过比较 UHF 传感器①、②的 UHF 脉冲信号幅值,避免外界干扰信号的影响。当 UHF 传感器①的信号脉冲幅值显著大于 UHF 传感 器②时,即 UHF 传感器②为背景信号,文中试验的 背景信号幅值约为0.02 V, UHF 传感器①为 UHF 局 放信号,例如尖端缺陷局放信号最大幅值为0.28 V, 则表明检测信号为 GIS 试验装置内的局放信号;当 UHF 传感器①的脉冲幅值小于 UHF 传感器②时, 即 UHF 传感器①信号为背景信号,或存在 UHF 局 放信号,但信号脉冲幅值小于 UHF 传感器②检测信 号,则为外部干扰脉冲信号。

试验采集不同耦合方式下注入脉冲及实际局放缺陷的 UHF 信号样本总计 6 000 组,为提高信号 计算效率,采用 K-means 聚类算法^[23-24] 对原始数据 样本的干扰信号数据识别并剔除,其中悬浮放电的 局放信号聚类分析提取如图 4 所示,由 UHF 传感器 ①、②局放检测的干扰避免方法可知,局放信号数 据与干扰信号数据的幅值存在较大差异,可比较 UHF 传感器①、②的 UHF 脉冲信号幅值,得出图 4 中幅值 0.7~1.0 为干扰信号数据,幅值 0~0.1 为局 放信号数据。

注入脉冲模拟局放 UHF 检测试验时,首先通过 内置或外置 UHF 传感器注入双指数脉冲信号,每次 试验注入1000 个恒定参数双指数脉冲信号,并采 集其产生的 UHF 信号样本。参考现场开展局放监 测灵敏度校验时采用的陡脉冲参数典型值并考虑 现有仪器的输出能力^[4],每个工频周期注入20 个脉 冲;然后采用 UHF 局放信号测量系统,通过 UHF 传 感器①、②测量双指数注入脉冲信号产生的 UHF 信 号,研究不同耦合方式下注入脉冲及局放缺陷 UHF 信号等效性规律。

由于试验中脉冲注入频次为每1 ms 注入1个 脉冲,若高速示波器观测相邻 UHF 信号脉冲时间间 隔为1 ms 时,可证明所测 UHF 信号为脉冲注入的 模拟局放信号。

2 基于经验模态分解的加权 IMF 的 UHF 信号等效性分析方法

2.1 UHF 信号归一化处理

悬浮、尖端、绝缘子气泡缺陷和不同耦合方式 下注入脉冲模拟局放的 UHF 原始信号见图 5, UHF 单脉冲信号采集时间为 1 μs, 共有 2 000 个采样点。

脉冲注入 UHF 信号幅值大小与脉冲注入位 置、电磁波信号传播路径以及 UHF 传感器的参数性 能等均有关^[12]。由于脉冲注入内置 UHF 传感器产 生的电磁波信号进入 GIS 内部无须经过盆式绝缘 子,信号衰减较小,另外浇筑口和敞开式盆式绝缘 子边缘的脉冲注入电磁波传播路径和衰减特性也 存在差异,所以不同局放 UHF 信号强度存在差异, 为有效处理不同的 UHF 局放信号和提高计算效率, 须进行归一化处理^[13]。设离散 UHF 信号序列为 $x=\{x_1,x_2,x_3,\dots,x_j\},j$ 为信号序列长度。通过归一 化处理后获得标准信号序列 x_1 。

$$x_{\rm J} = \frac{x - x_{\rm min}}{x_{\rm max} - x} \tag{1}$$

式中: x_{min}、x_{max}分别为离散 UHF 信号序列中的最小 值和最大值。

2.2 UHF 信号有效脉冲提取方法

不同 UHF 局放信号的脉冲起始时刻不同,若对 UHF 信号直接进行等效性分析,在脉冲起始时刻尚 未统一对齐的情况下,将会导致等效性分析失效。 因此,比较脉冲注入模拟局放等效性前,须进行有 效脉冲提取。

计算 UHF 信号的局放起始时刻^[23],截取局放 起始时刻值后的一定脉冲持续时间,并保证每种局 放信号长度相等。由于信号能量与电压平方成正 比,可将 UHF 信号的电压波形转化为能量累积曲 线。当局放信号远大于背景噪声时,在能量累积差 值曲线上会产生明显的拐点,该拐点即可视为局放 发生的起始时刻,对于长度为 N 的信号,将能量累 积值减去每点的平均能量,可得:

$$s'_{k} = s_{k} - p = \sum_{n=1}^{k} u_{n}^{2} - \sum_{n=1}^{N} \frac{u_{n}^{2}}{N} \times k$$
 (2)

式中: s'_k 为能量差值; s_k 为能量累计值;p为每点的平均能量; u_n 为信号电压幅值;k为曲线采样点序列; $n=1,2,3,\cdots,k,\cdots,N_{\circ}$ 为保证提取的 UHF 信号脉冲长度保持一致,考虑到 UHF 原信号的长度为 2 000以及信号脉冲的持续时间,故信号脉冲提取长 度为 1 000,UHF 局放信号有效脉冲提取见图 6。

2.3 UHF 信号经验模态分解

经验模态分解是一种应用于非线性与非平稳时间序列信号的分解方法^[25],具体分解流程如图 7 所示,图 7 中 *e* 为经验模态分解次数。

首先识别原始信号 x(t)的所有局部极值,包括局部最大和最小值;然后将所有局部极大和极小值分别用三次样条插值函数拟合形成原信号的上下包络线;计算上下包络线的平均包络线 m(t);原始

图 6 UHF 局放信号有效脉冲提取

Fig.6 Effective pulse extraction of the UHF partial discharge signal

图 7 经验模态分解流程

Fig.7 Flow chart of empirical mode decomposition

信号x(t)减去平均包络线m(t),得到新的数据序列h(t):

$$h(t) = x(t) - m(t)$$
 (3)

判断 h(t) 是否满足 IMF 的 2 个条件,即:(1) 在整个时域内极值点个数与过零点个数相等或最 多相差 1;(2) 在任意时刻,由局部极大值点形成的 上包络线和由局部极小值点形成的下包络线的平 均值为 0,即上、下包络线相对于时间轴局部对称。 如果满足 IMF 的 2 个条件,该信号就是 1 个 IMF 分 量;如果不满足,以该信号为基础,重新进行分析, 直至分解 d 次后分解得到的信号满足 IMF 的 2 个条 件,得到原始信号的第 1 个 IMF 分量。对残余信号 r(t)进行上述步骤处理,可得到第 2 个 IMF 分量。 继续进行分解,直到最后 1 个残余信号无法继续分 解为止,完成对信号 x(t)的经验模态分解过程。将 原始信号 x(t)分解后,所获得第1个 IMF 分量中包 含原始信号 x(t)中时间尺度最小(频率最高)的成 分,且随着 IMF 阶数的增加其对应的频率成分逐渐 降低,其中残余信号 r(t)的频率成分最低。

由于不同缺陷和脉冲注入的 UHF 信号频谱组 成不同^[22],故不同的 UHF 信号序列分解出的 IMF 的个数存在差异,若直接采用分解后的 IMF 进行等 效性分析,会出现不同 UHF 信号的 IMF 个数匹配困 难问题,无法进行 UHF 信号的等效性分析。悬浮缺 陷 UHF 信号经验模态分解结果如图 8 所示,分解出 了 11 个 IMF 和 1 个残差序列。

IMF 的各个分量 IMF1—IMF11 分别对应原始 信号中的各频率分量,并按照从高频到低频的顺序 依次排列,残差序列 r11 为原始信号中无法被分解 为 IMF 的残余部分。内置和外置脉冲注入的 UHF 信号通过经验模态分解出了 8 个 IMF 和1 个残差序 列,另外 2 个局放缺陷及脉冲注入 UHF 信号分解结 果中,尖端缺陷 UHF 信号分解出了 10 个 IMF 和1 个残差序列,气泡缺陷 UHF 局放信号分解出了 12 个 IMF 和1 个残差序列。

2.4 IMF 加权处理优化

为解决 UHF 信号序列经验模态分解出的 IMF

个数差异问题,文中对每个 UHF 信号分解出的 IMF 进行加权处理,解决不同 UHF 信号 IMF 个数差异造 成的信号等效性分析匹配困难的问题。设 1 个 UHF 信号序列经过经验模态分解之后产生 *l* 个 IMF (*x*_{imf,1},*x*_{imf,2},…,*x*_{imf,l}),即:

 $x(t) = x_{imf,1} + x_{imf,2} + \dots + x_{imf,l} + r_l(t)$ (4) 式中: $x_{imf,l}$ 为 UHF 信号序列经过经验模态分解之后 产生的第 l个 IMF; $r_l(t)$ 为第 l个残余信号。

UHF 原始信号序列 x(t) 可由 $l \uparrow IMF$ 和残差 信号 $r_l(t)$ 组成,故原始 UHF 信号序列中所含的特 征量 I(t) 也由其组成。进一步量化 x(t) 所含的特 征量 I(t),则 1 个 IMF 所含的特征量记为 $I_{imf,l}$,残 差序列所含的特征量记为 $I_{r,l}$,则存在:

$$I(t) = I_{imf,1} + I_{imf,2} + \dots + I_{imf,l} + I_{r,l}$$
(5)

由式(5)可知,由于信号特征量可以进行累加, 故可以对 IMF 进行加权处理。由于不同的 IMF 所 含的时域特征量存在差异,且经过分解后第1次的 IMF 中所含的时域特征量最多,所以在运用信号等 效性判据方法进行分析时必须考虑特征量的问题。 如文中所述,UHF 信号 x(t)通过经验模态分解后存 在 l 个 IMF,对其进行加权,如式(6)所示。该方法 既可以解决 IMF 个数不同造成的信号等效性分析 匹配困难的问题,又能够最大限度地保留原信号 特征。

$$I(t) = \frac{1}{2^{1}} x_{\text{imf},1} + \frac{1}{2^{2}} x_{\text{imf},2} + \dots + \frac{1}{2^{l}} x_{\text{imf},l} + \left(1 - \sum_{i=1}^{l} \frac{1}{2^{i}}\right) r_{l}(t)$$
(6)

2.5 UHF 信号等效性分析

为量化分析注入信号与局放信号等效性,常采 用的方法为计算注入信号与局放信号的偏差平均 值 μ 、最大值m和方差 σ ,进行等效性分析^[16],计算 方法见式(7)—式(9)。

$$\mu = \frac{1}{N_{\rm s}} \sum_{d=1}^{N_{\rm s}} \left(s_{{\rm ps},d} - s_{{\rm pd},d} \right) \tag{7}$$

$$m = \max \left| s_{\text{ps},d} - s_{\text{pd},d} \right| \tag{8}$$

$$\sigma = \sqrt{\frac{1}{N_{\rm s}} \sum_{d=1}^{N_{\rm s}} \left[\left(s_{\rm ps,d} - s_{\rm pd,d} \right) - \mu \right]^2}$$
(9)

式中: $s_{ps,d}$ 、 $s_{pd,d}$ 分别为注入信号、局放信号; N_s 为采 样点总数;d为信号采样点序列, $d=1,2,3,\dots,N_s$ 。

以上方法适用于时域特征差异较小的信号等 效性分析,对于文中时域特征差异较大的 UHF 局放 信号,若直接进行信号偏差计算,等效性参数指标 受信号局部特征影响较大,无法保证等效性分析有 效性。 欧式距离对 2 个不同离散信号中每个对应采样 点求取直线距离^[25-26],可用于文中 UHF 局放脉冲信 号的全长度特征的等效性分析。欧式距离信号等 效性判据为欧式距离越近则 UHF 信号序列等效性 越高;反之,则等效性越低。欧式距离计算如下:

$$D(x,y) = \left[\sum_{b=0}^{N_{s}-1} (X_{b} - Y_{b})^{2}\right]^{\frac{1}{2}}$$
(10)

式中: $D(\cdot)$ 为距离函数; X_b 、 Y_b 为2个不同的离散信号;b为信号采样点序列, $b=0,1,2,\cdots$, N_s-1 。

为了判断脉冲注入模拟局放的 UHF 信号与实际局放 UHF 信号的相似性,文中提出基于经验模态分解的加权 IMF 的欧式距离等效性分析方法,提取的函数^[27]须满足:

 $D(E(S), E(Q)) \leq D(S,Q)$ (11) 式中: $E(\cdot)$ 为分解的 IMF,即特征函数; $S \setminus Q$ 为 UHF 信号序列。为进一步减小计算误差,文中通过欧式 距离序列的平均值 M_e 和最大值 M_a 的指标衡量 UHF 信号之间的等效性规律。由于 UHF 信号进行了归 一化处理,将欧式距离值与 1 的比值百分数作为等 效性指标,百分值越大则等效性越低。

3 基于加权 IMF 的 UHF 信号等效性分析 结果

3.1 加权 IMF 的 UHF 信号等效性分析方法验证

为分析加权 IMF 方法的信号等效性,文中基于 MATLAB 分别采用加权 IMF 和常规处理方法计算 不同 UHF 信号的等效性指标。不同耦合方式下注 入脉冲模拟局放的加权 IMF 与常规方法的等效性 分析结果如表 1—表 3 所示。

表 1 内置脉冲注入的加权 IMF 与原信号等效性分析 Table 1 Equivalence analysis of weighted IMF and original signal with internal pulse injection

左 177 半 五日	加权 IMF 方法		常规方法		
畎陷尖型	$M_{\rm e}/\%$	$M_{\rm a}/\%$	μ	m	σ
尖端缺陷	4.26	13.27	0.123 7	0.801 2	0.514 3
悬浮缺陷	3.82	10.28	0.131 7	0.715 6	0.421 4
绝缘子 气泡缺陷	4.11	13.11	0.172 6	0.832 6	0.545 3

比较不同耦合方式下的常规方法与加权 IMF 方法的等效性分析结果可知,常规信号偏差法的最 低平均偏差μ和最大值偏差m都达到了 0.123 7 和 0.715 6,而采用加权 IMF 法处理的欧式距离平均值 *M*_e和最大值 *M*_a只达到了 5.67% 和 15.26%,等效性 指标明显减小。由此可知,采用常规方法进行 UHF

表 2 敞开式脉冲注入的加权 IMF 与原信号等效性分析 Table 2 Equivalence analysis of weighted IMF and original signal with open pulse injection

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	加权 IMF 方法		常规方法		
畎阳矢望	$M_{\rm e}/\%$	$M_{\rm a}/\%$	μ	m	$\sigma$
尖端缺陷	4.30	13.82	0.154 9	0.838 0	0.476 1
悬浮缺陷	3.96	12.36	0.141 3	0.784 2	0.325 3
绝缘子 气泡缺陷	4.42	15.10	0.207 3	0.827 2	0.411 2

表 3	浇筑	口脉冲注入的加权 IMF 与原信号等效性分析	
Tabl	e 3	Equivalence analysis of weighted IMF and	
original signal with pouring port pulse injection			

-	-	-			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	加权 IMF 方法		常规方法		
畎阳 尖望	$M_{\rm e}/\%$	$M_{\rm a}/\%$	μ	m	σ
尖端缺陷	5.67	15.26	0.190 2	0.845 5	0.488 2
悬浮缺陷	4.96	12.78	0.133 4	0.868 6	0.429 1
绝缘子 气泡缺陷	5.43	14.43	0.183 2	0.891 0	0.443 1

信号等效性分析误差较大,难以保证不同耦合方式 下注入脉冲的 UHF 信号等效性分析有效性。采用 加权 IMF 处理的信号欧式距离平均值和最大值均 较小,降低了信号局部差异带来的误差,证明了文 中方法的有效性。

3.2 不同耦合方式下注入脉冲模拟局放 UHF 信号 等效性规律

为分析注入脉冲模拟局放与不同局放缺陷的 UHF 信号等效性规律,分别将 3 种耦合方式下注入 脉冲的欧式距离平均值 *M*。和最大值 *M*。等效性指标 进行求和平均计算,结果如表 4 所示。

表 4 不同缺陷类型与脉冲注入 UHF 信号等效性规律

Table 4 Equivalent rule of different defect types and pulse injection UHF signals

たたみそろ	加权 IMF 方法		
畎阳失望	$M_{ m e}/\%$	$M_{\rm a}/\%$	
尖端缺陷	4.74	14.12	
悬浮缺陷	4.25	11.81	
绝缘子 气泡缺陷	4.65	14.21	

分析表4可知,注入脉冲模拟局放与悬浮缺陷 UHF 信号之间的欧式距离平均值和最大值指标最 小,其中悬浮缺陷与注入脉冲 UHF 信号欧式距离平 均值和最大值指标分别为4.25%和11.81%。由欧 式距离等效性判据可知,内/外置注入脉冲模拟局 放与悬浮缺陷 UHF 局放信号等效性最高。由于现 场校验要求双指数注入脉冲参数恒定,且注入频次 固定不变,故每个注入脉冲 UHF 传感器产生的电磁 波信号能量基本相同,而 GIS 内部的悬浮缺陷放电 特征^[28]表现为脉冲幅值较大、放电间隔和次数稳定,这与恒定参数脉冲注入模拟局放较为相似。因此,注入脉冲模拟局放与悬浮缺陷 UHF 局放信号等效性最高,进一步验证了文中等效性分析结果的正确性。

为比较不同耦合方式下注入脉冲与实际局放 UHF 信号等效性,分别将 3 种局放缺陷的欧式距离 平均值 *M*。和最大值 *M*。等效性指标进行求和平均计 算,结果如表 5 所示。

表 5 不同耦合方式下注入脉冲与实际 局放缺陷 UHF 信号等效性规律

Table 5 Equivalence rule of pulse injection with different coupling modes and UHF signal of actual partial discharge defects

細 人ナー	加权 IMF 方法		
柄行力式	$M_{ m e}/\%$	$M_{\rm a}/\%$	
内置脉冲注入	4.06	12.22	
敞开式脉冲注入	4.23	13.76	
浇筑口脉冲注入	5.35	14.16	

分析表 5 可知,其中内置脉冲注入模拟局放与 实际局放缺陷 UHF 信号等效性最高,欧式距离等效 性指标平均值和最大值最小,分别为 4.06% 和 12.22%。内置脉冲注入模拟局放,其产生的电磁波 信号耦合进入 GIS 内部无须经过盆式绝缘子,电磁 波信号衰减特性与实际 GIS 内部缺陷局放更为相 似。而外置脉冲注入产生的电磁波信号,首先须通 过盆式绝缘子耦合进入 GIS 内部,其信号传播规律 与 GIS 内部缺陷局放相差较大,故内置 UHF 注入脉 冲模拟局放与实际局放等效性更高。进一步分析 表 5 可知,虽然无金属屏蔽敞开式脉冲注入相较于 内置注入的等效性略低,但是相差较小,对于现场 UHF 局放监测装置的脉冲注入校验,也可选择无金 属屏蔽的敞开式盆式绝缘子边缘脉冲注入。

4 结论

(1) 文中提出基于经验模态分解的加权 IMF 的 UHF 信号等效性分析方法,解决了 IMF 个数差异 的问题和信号特征局部差异较大的影响,采用加权 IMF 法可定量分析不同 UHF 信号等效性规律,提高 UHF 信号等效性分析有效性。

(2)相较于尖端和绝缘子气泡局放缺陷,双指数脉冲注入模拟的局放与实际悬浮缺陷局放 UHF 信号等效性最高。UHF局放在线监测装置进行悬 浮缺陷的局放缺陷识别和定位功能检测,可采用恒 定参数双指数脉冲注入传感器模拟局放代替实际 悬浮放电。 (3)不同耦合方式下注入脉冲中,内置和无金 属屏蔽脉冲注入 UHF 信号与实际局放缺陷的 UHF 信号的加权 IMF 等效性指标相差不大。故采用脉 冲注入模拟局放法校验 UHF 局放监测装置功能时, 可优先选择内置 UHF 传感器脉冲注入,其次是无金 属屏蔽的敞开式盆式绝缘子边缘脉冲注入,最后选 择浇筑口脉冲注入。

参考文献:

- [1] 李鹏,毕建刚,于浩,等.变电设备智能传感与状态感知技术及应用[J].高电压技术,2020,46(9):3097-3113.
 LI Peng, BI Jiangang, YU Hao, et al. Technology and application of intelligent sensing and state sensing for transformation equipment[J]. High Voltage Engineering,2020,46(9):3097-3113.
- [2] 许渊,刘卫东,陈维江,等.交流 GIS 绝缘子表面亚毫米级金属颗粒的运动和局部放电特性[J].中国电机工程学报, 2019,39(14):4315-4324,4334.

XU Yuan, LIU Weidong, CHEN Weijiang, et al. Motion characteristics and partial discharge characteristics of submillimeter metal particles on the surface of AC GIS spacer [J]. Proceedings of the CSEE, 2019, 39(14):4315-4324, 4334.

- [3] TENBOHLEN S, DENISSOV D, HOEK S M, et al. Partial discharge measurement in the ultra high frequency (UHF) range
 [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(6):1544-1552.
- [4] BOECK W, ALBIEZ M, BENGTSSON T, et al. Partial discharge detection system for GIS: sensitivity verification for the UHF method and the acoustic method[J]. Électra, 1999(183): 75-87.
- [5] 国家能源局. 变电设备在线监测装置检验规范 第4部分:气体绝缘金属封闭开关设备局部放电特高频在线监测装置: DL/T 1432.4—2017[S]. 北京:中国电力出版社,2017. National Energy Bureau of the People's Republic of China. Testing specification for online monitoring device for transformation equipment. Part 4:on-line partial discharge monitoring device for gas-insulated metal-enclosed switchgear based on ultra high frequency: DL/T 1432.4-2017[S]. Beijing: China Electric Power Press,2017.
- [6] GAO W S, DING D W, LIU W D. Research on the typical partial discharge using the UHF detection method for GIS[J].
 IEEE Transactions on Power Delivery, 2011, 26 (4): 2621-2629.
- [7] HOSHINO T, MARUYAMA S, NAKAJIMA T. Development of a loop-type partial discharge sensor embedded in insulation material of a 245 kV-class GIS[C]//PES T&D.Orlando, FL, USA. IEEE, 2012;1-6.
- [8] 杨勇,邵先军,金涌涛,等. GIS 盆式绝缘子结构对局部放电
 特高频信号泄漏特性的影响研究[J]. 高压电器,2021,57
 (9):95-101,108.

YANG Yong, SHAO Xianjun, JIN Yongtao, et al. Influence of spacers structure on ultra-high frequency partial discharge signal leakage characteristics [J]. High Voltage Apparatus, 2021, 57 (9):95-101,108.

- [9] 李兴旺, 黎量, 唐志国,等. 外置式 UHF 校验信号注入方法的可行性研究[J]. 高压电器,2015,51(5):71-76.
 LI Xingwang, LI Liang, TANG Zhiguo, et al. Feasibility analysis of radiating UHF verification signal through small hole in metal flange[J]. High Voltage Apparatus,2015,51(5):71-76.
- [10] ITO T, KAMEI M, UETA G, et al. Improving the sensitivity verification method of the UHF PD detection technique for GIS
 [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(6):1847-1853.
- [11] 王其林, 巩俊强, 张文, 等. "L"形测试截面下 GIS 绝缘间隙 UHF 信号传播特性[J]. 高压电器, 2023, 59(11):193-200.
 WANG Qilin, GONG Junqiang, ZHANG Wen, et al. UHF signal propagation characteristics of GIS insulation gap under "L shaped" test section[J]. High Voltage Apparatus, 2023, 59 (11):193-200.
- [12] 吴云杰,张宏亮,吴军辉,等. 252 kV GIS 局部放电特高频 信号在直线和L型结构中传播特性的试验研究[J]. 高压 电器,2022,58(7):223-228.
 WU Yunjie, ZHANG Hongliang, WU Junhui, et al. Experimental research on propagation characteristics of 252 kV GIS partial discharge UHF signal in straight line and L-shaped

structure[J]. High Voltage Apparatus,2022,58(7):223-228.

- [13] LI Q,QIU W B,CAI K S, et al. Influence of GIS structure on propagation of electromagnetic waves of partial discharge [C]//2011 IEEE Power Engineering and Automation Conference. Wuhan, China. IEEE, 2011:128-135.
- [14] SCHICHLER U, KOLTUNOWICZ W, GAUTSCHI D, et al. UHF partial discharge detection system for GIS: application guide for sensitivity verification [J]. VDE High Voltage Technology 2016; ETG-Symposium, 2016; 1-9.
- [15] 徐肖庆,段雨廷,彭晶,等. 注入脉冲与局部放电 UHF 信号的等效性仿真研究[J]. 软件,2020,41(4):45-50.
 XU Xiaoqing, DUAN Yuting, PENG Jing, et al. Simulation research on equivalence between UHF signals caused by the pulse injected into GIS and actual partial discharge UHF signal inside GIS[J]. Computer Engineering & Software, 2020, 41 (4):45-50.
- [16] 李端姣,郑书生,黎量,等.人工电压脉冲与局部放电 UHF 信号的等效性分析[J].电网技术,2014,38(10):2900-2904.

LI Duanjiao, ZHENG Shusheng, LI Liang, et al. Analysis on equivalence between UHF discharge signals caused by voltage pulses artificially injected into GIS and that caused by actual partial discharge signals inside GIS [J]. Power System Technology, 2014, 38(10): 2900-2904.

- [17] 李兴旺,卢启付,唐志国,等. GIS 局部放电特高频传感器接收特性表征研究[J]. 广东电力,2013,26(9):55-60.
 LI Xingwang,LU Qifu,TANG Zhiguo, et al. Study on receiving characteristics of the UHF sensor for GIS partial discharge[J].
 Guangdong Electric Power,2013,26(9):55-60.
- [18] 弓艳朋,彭江,毕建刚,等. GIS 特高频传感器现场校验有效 性影响因素[J].中国电力,2018,51(12):101-106,113.

GONG Yanpeng, PENG Jiang, BI Jiangang, et al. Study on factors affecting validity of field calibration of GIS UHF sensors [J]. Electric Power, 2018, 51(12): 101-106, 113.

 [19] 唐志国,王海青,何宁辉,等.局部放电特高频传感器及系统现场校验与评估技术[J].高压电器,2018,54(11): 48-54.

TANG Zhiguo, WANG Haiqing, HE Ninghui, et al. Field calibration and evaluation of partial discharge UHF sensors and detection system[J]. High Voltage Apparatus, 2018, 54(11): 48-54.

- [20] 丁登伟,高文胜,刘卫东. GIS 结构尺寸对局部放电特高频 信号的影响[J]. 电网技术,2013,37(10):2850-2854.
 DING Dengwei, GAO Wensheng, LIU Weidong. Influence of structure dimension of GIS on UHF signal of partial discharge
 [J]. Power System Technology,2013,37(10):2850-2854.
- [21] 丁登伟,唐诚,高文胜,等. GIS 中典型局部放电的频谱特征 及传播特性[J]. 高电压技术,2014,40(10):3243-3251.
 DING Dengwei, TANG Cheng, GAO Wensheng, et al. Frequency attributes and propagation properties of typical partial discharge in GIS[J]. High Voltage Engineering, 2014,40(10): 3243-3251.
- [22] 徐洋,刘卫东,高文胜. 局部放电偶发脉冲的测量、识别与记录方法[J]. 华北电力大学学报(自然科学版),2019,46
 (2):76-82,90.

XU Yang, LIU Weidong, GAO Wensheng. Measuring, distinguishing and recording methods for partial discharge pulses with low repetition rate [J]. Journal of North China Electric Power University (Natural Science Edition), 2019, 46(2):76-82,90.

[23] 严英杰,盛戈皞,刘亚东,等. 基于滑动窗口和聚类算法的 变压器状态异常检测[J]. 高电压技术,2016,42(12): 4020-4025.

YAN Yingjie, SHENG Gehao, LIU Yadong, et al. Anomalous state detection of power transformer based on algorithm sliding windows and clustering[J]. High Voltage Engineering, 2016, 42(12):4020-4025.

- [24] FAN C D,DING C K,ZHENG J H, et al. Empirical mode decomposition based multi-objective deep belief network for short-term power load forecasting[J]. Neurocomputing, 2020, 388(C):110-123.
- [25] 周任军,李斌,黄婧杰,等. 含源荷相似度和曲线波动度约束的源荷储协调优化模型[J]. 中国电机工程学报,2020,40(13):4092-4102.
 ZHOU Renjun,LI Bin,HUANG Jingjie, et al. Source-load-storage coordinated optimization model with source-load similarity and curve volatility constraints[J]. Proceedings of the CSEE, 2020,40(13):4092-4102.
- [26] MOON Y S, WHANG K Y, LOH W K. Efficient time-series subsequence matching using duality in constructing windows [J]. Information Systems, 2001, 26(4):279-293.
- [27] 党倩,崔阿军,尚闻博,等.采用欧式形态距离的负荷曲线 近邻传播聚类方法[J].西安交通大学学报,2022,56(1):

165-176.

DANG Qian, CUI Ajun, SHANG Wenbo, et al. Affinity propagation clustering method of typical load curve with Euclidean morphological distance [J]. Journal of Xi'an Jiaotong University, 2022, 56(1): 165-176.

[28] 唐志国,唐铭泽,李金忠,等. 电气设备局部放电模式识别研究综述[J]. 高电压技术,2017,43(7):2263-2277.
TANG Zhiguo, TANG Mingze, LI Jinzhong, et al. Review on partial discharge pattern recognition of electrical equipment [J]. High Voltage Engineering,2017,43(7):2263-2277.

作者简介:

董冰冰(1987),男,博士,副研究员,研究 方向为电力设备在线监测与故障诊断、放电理 论与试验(E-mail:bndong@126.com);

李康(2000),男,硕士在读,研究方向为 GIS 在线监测与故障诊断;

高常胜(1997),男,硕士在读,研究方向为 GIS 在线监测与故障诊断。

董冰冰

The equivalence of weighted IMF partial discharge signals pulse injection by different coupling modes in GIS

DONG Bingbing¹, LI Kang¹, GAO Changsheng¹, LIU Guanke², DAI Xiliang², XIA Yunfeng³

(1. School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China;

2. Dongguan Power Supply Bureau of Guangdong Power Grid Co., Ltd., Dongguan 523008, China;

3. Power Transmission Operation & Maintenance Branch, Hainan Power Grid Co., Ltd., Haikou 570100, China)

Abstract: Pulse injection to simulate partial discharge (PD) is the main method for functional verification of gas insulated switchgear (GIS) ultra high frequency (UHF) PD monitoring device. Due to the different coupling modes of pulse injection in field verification, the equivalence law between simulated PD and actual PD is not clear, and the effectiveness of functional verification of monitoring device cannot be guaranteed. In this paper, a typical PD defect (tip, suspension, insulator bubble) and internal/external pulse injection UHF PD detection platform for 126 kV GIS are established, and the effective pulses of UHF signals are normalized and extracted. Then a signal processing method of weighted intrinsic mode functions (IMF) based on empirical mode decomposition is proposed. The signal equivalence is characterized by calculating the average and maximum values of the Euclidean distance of the signal, and finally compared with the conventional signal deviation method. The research shows that compared with the conventional signal equivalence analysis method, the weighted IMF method can effectively solve the problem of large local difference of UHF signal waveform. The internal sensor pulse injection analog PD and suspended PD have the highest equivalence. The average value M_e and the maximum value M_a of Euclidean distance are 3.82% and 10.28%, respectively. Therefore, the function verification of UHF monitoring device can use constant parameter pulse injection instead of suspension defect, and the internal UHF sensor injection can be preferred for analog PD. The research in this paper can provide reference for the pulse injection method for the function verification of UHF PD monitoring device.

Keywords: pulse injection; partial discharge simulation; empirical mode decomposition; signal equivalence analysis; intrinsic mode functions (IMF); Euclidean distance

(编辑 吴昊)