DOI:10.12158/j.2096-3203.2022.03.030

基于混合气体热特性的 GIL 氮气使用配比研究

庞乐乐¹,杨文勇¹,李鹏飞¹,郭晓飞¹,高鹏²,梁睿²
(1.国网冀北电力有限公司张家口供电公司,河北张家口 075000;
2.中国矿业大学电气与动力工程学院,江苏 徐州 221116)

摘 要:SF₆/N₂混合气体具有绝缘性能良好、环境效益好等优点,被认为是能替代 SF₆的最具发展前景的气体之一,但 SF₆/N₂混合气体在不同场景下的混合比问题尚缺乏研究。文中在保证气体绝缘输电线路(GIL)绝缘水平的前提下,建立多物理场耦合计算模型,从混合气体热特性的角度出发,分析不同绝缘气体压强、负载电流和环境温度下 SF₆/N₂混合比与 GIL 温升之间的关系,为 GIL 在不同场景下选择合适的 SF₆/N₂混合比提供依据。结果表明: 绝缘气体压强和相同压强下 SF₆含量均与 GIL 温升呈负相关关系;设备的负载电流长期超过 3 kA 时,建议 SF₆含量 为 40%~60%;设备运行在中低纬度地区时,建议 SF₆含量为 40%~70%,运行在高纬度地区时,建议 SF₆含量为 30%~40%。此外,由于设计 GIL 设备时考虑了安全裕度,因此通常 SF₆含量不低于建议值的 70%就能满足 GIL 设 备的绝缘和温升要求。

关键词:气体绝缘输电线路(GIL);SF₆/N₂混合气体;气体组分;气体绝缘;有限元法;热特性分析 中图分类号:TM75 文献标志码:A 文章编号:2096-3203(2022)03-0244-08

0 引言

气体绝缘输电线路(gas insulated transmission lines,GIL)具有电压等级高、传输容量大、可靠性高、 环境适应能力强等优点^[1-3],在电力系统中得到越 来越广泛的应用。目前,GIL 主要使用纯 SF₆气体作 为绝缘气体,但大量研究发现,SF₆的全球变暖潜能 值是 CO₂的 23 900 倍,且其在大气中的降解过程可 以达到 3 200 a 左右^[4-6],这表明 SF₆是一种温室效 应显著且在大气中难以分解的惰性气体。为应对 全球气候变暖问题,欧盟相关国家明确规定:截止 2030 年,欧盟国家境内 SF₆排放量控制到 2014 年排 放量的 1/3。我国也制定了"碳达峰,碳中和"的国 家战略目标,因此,整个电力行业亟须减少 SF₆的 使用。

目前,国内外学者针对 SF₆混合气体与替代气体已进行了大量研究。现有的新型气体 CF₃I, C₄F₇N和 c-C₄F₈的绝缘性能研究还不完善,且易受 不均匀电场的影响^[7-9]。与 SF₆混合气体相比,CF₃I 的伏秒特性受电场不均匀程度的影响更大^[6], c-C₄F₈混合气体的液化温度低,不能用于低温和高 海拔地区^[10]。与以上新型气体相比,SF₆混合气体 更适宜成为纯 SF₆的可行替代气体,SF₆/N₂混合气 体具有绝缘性能好、液化温度低、电场均匀性灵敏 度高、经济和环境效益好等优点,具有很好的应用

收稿日期:2022-02-07;修回日期:2022-04-15 基金项目:江苏省自然科学基金资助项目(BK20201348) 前景^[11],同时 SF₆/N₂混合气体能在较大的温度范围内保持稳定,可应用于寒冷地区^[12]。

针对 SF₆/N₂混合气体的气体绝缘和气体击穿 等,目前已取得了丰富的研究成果^[13-16]。研究发 现,随着压强的增加,不同混合比的 SF₆/N₂混合气 体的击穿电压线性增加,并趋于稳定,且 SF₆含量为 10%~20%时即可保持足够的绝缘能力^[17]。然而, 在满足设备绝缘能力的前提下,以SF₆/N₂为绝缘气 体的 GIL 在不同条件下的热特性研究还相对较少, 且均未研究不同条件下满足工程需要的SF₆/N₂混合 比方案。

因此,文中在满足 GIL 绝缘能力的前提下,采用 有限元法,结合 GIL 和材料热物性参数以及边界条 件建立单相三维 GIL 仿真模型。利用该模型,通过 改变绝缘气体压力、负载电流、环境温度,研究了不 同条件下,不同 SF₆/N₂混合比对 GIL 温升特性的影 响,从而为不同条件下 SF₆/N₂混合比的确定提供了 使用依据,对降低 SF₆的使用量、减少对环境的影响 具有重要意义。

1 GIL 温升仿真模型建立

以1100 kV GIL 为研究对象,包括铝合金材料的导体和外壳,盆式绝缘子,触头,绝缘气体和支撑 绝缘子等部分。

1.1 电磁场数值计算

在 GIL 导体流经负载电流时导体和壳体均会产 生焦耳热损耗,因此通过麦克斯韦方程组求解,其 控制方程表达式如下[18]:

$$\frac{1}{\mu}\nabla^2 A = -J_s + j\omega\rho A \tag{1}$$

式中:**J**_s 为电流密度; μ 为介质的磁导率; ρ 为导体 电导率; A 为磁矢位; ω 为角频率。在计算导体的焦 耳热损耗时,由于外壳接地的屏蔽作用,GIL 导体的 邻近效应系数为1,阻抗较小。因此,不平衡电流的 影响可以忽略不计,只考虑集肤效应^[19]。

计算壳体热损耗时,由于电磁感应,GIL 外壳上 产生2种感应电流,即外壳接地引起的壳体环流和 在壳体横截面内的涡流。全连式结构的涡流损耗 在工程计算中可以忽略不计^[20]。GIL 导体与壳体 单位体积下的损耗为^[21]:

$$P_{\rm dv} = I_{\rm d}^2 R_{\rm d} / S_{\rm d} \tag{2}$$

$$P_{\rm kv} = I_{\rm k}^2 R_{\rm k} / S_{\rm k} \tag{3}$$

式中: P_{dv} , P_{kv} 分别为导体、壳体单位体积焦耳热功率; I_{d} 为导体电流; I_{k} 为壳体感应电流; R_{d} , R_{k} 分别为导体、壳体电阻值; S_{d} , S_{k} 分别为导体、壳体的横截面积。

1.2 温度场数值计算

为简化计算,考虑 GIL 的工作环境和结构,作出 以下假设:(1)由于绝缘气体和空气的流速远低于 声速,可将其视为不可压缩粘性流体处理。(2)对 于单相 GIL,导体和壳体材质各向同性,热损耗在其 内部均匀分布。(3) GIL 绝缘气体处于自然对流状 态,即因温度差而导致绝缘气体存在密度差,造成 气体流动。(4)空气域的外边界温度为环境温度, 不受 GIL 内部发热的影响。

当产生的热量与交换的热量相同时认为 GIL 处 于热平衡状态, GIL 热交换过程如图 1 所示, 热平衡 公式为式(4) 和式(5)。

图 1 GIL 热交换过程

$$P_{\rm d} + P_{\rm k} = Q_{\rm kF} + Q_{\rm kD} \tag{4}$$

$$P_{\rm d} = Q_{\rm dF} + Q_{\rm dD} \tag{5}$$

式中: P_d 为导体焦耳热损耗; P_k 为壳体涡流损耗; Q_{kF} 为壳体辐射散热量; Q_{kD} 为壳体对流散热量; Q_{dF} 为导体辐射散热量; $Q_{\rm dD}$ 为导体对流散热量。

GIL 外壳和导体内部的传热主要由热传导控制 方程表示,当分析由于 GIL 载流量变化引起的温度 变化过程时,由于载流量是时间的函数,所以传热 微分方程也应包括时间。GIL 热传导控制方 程为^[22]:

$$\rho_T C_p \frac{\partial T}{\partial t} = \lambda_T \nabla^2 T + Q \tag{6}$$

式中: ρ_T 为导体或壳体在温度 T 时的材料密度; C_p 为恒压热容; λ_T 为温度 T 时的导热系数; T 为实际 温度; Q 为热损耗; t 为运行时间。

GIL 与空气域之间的对流换热可以等效为大空间内水平圆柱体的对流换热,因此边界条件为:

$$q_{\rm k} = h_{\rm k}(T_{\rm k} - T_{\rm kq}) \tag{7}$$

式中: q_k 为壳体与外部空气的对流换热量; T_k 为壳体温度; T_{kq} 为空气域温度; h_k 为对流换热系数。 h_k 受许多因素影响,如气体流速、温度、特征尺寸等。 h_k 由两部分组成,即不考虑气流的自然对流换热系数 h_{kP} 。

GIL 导体与外壳之间以及外壳对空气的热辐射可以根据前面的假设和 Stefan-Boltzmann 定律来 计算^[23]:

$$q_{\rm dk} = \frac{\sigma(T_{\rm d}^4 - T_{\rm k}^4)}{\frac{1}{\varepsilon_{\rm b}n} + \frac{D_{\rm d0}(1 - \varepsilon_{\rm k})}{\varepsilon_{\rm b}D_{\rm t}}}$$
(8)

$$q_{\rm kF} = \sigma \varepsilon_{\rm k0} (T_{\rm k}^4 - T_{\rm kq}^4) \tag{9}$$

式中: q_{dk} 为导体与外壳之间的热辐射; q_{kF} 为外壳对 空气的热辐射; σ 为 Stefan-Boltzmann 常数; ε_{d0} , ε_k , ε_{k0} 分别为导体外表面、外壳内表面和外壳外表 面的表面发射率,其大小与导体和外壳所涂的材料 有关; T_d 为导体温度; D_{d0} 为导体外径; D_k 为壳体 内径。

1.3 混合气体热物性参数

在工程应用中,需要求解多物理场耦合作用下 混合气体的热物性参数。气体密度 ρ 、恒压热容 C_p 、定容热容 C_v 都与温度和压力有关。然而,导热 系数k和动力粘度 μ 只与温度有关,其热物性参数 计算如下^[24]:

$$\boldsymbol{\alpha}_{\mathrm{m}} = \left(\sum_{i=1}^{n} y_{i} M_{i}^{\beta} \boldsymbol{\alpha}_{i} \right) / \left(\sum_{i=1}^{n} y_{i} M_{i}^{\beta} \right)$$
(10)

$$\sum_{i=1}^{n} y_i = 1$$
 (11)

式中: α_{m} 为热物性参数,包括 ρ , C_{p} , C_{v} ,k, μ ; α_{i} 为组分i对应的热物性参数;n为混合气体组分的 数量,文中n=2; y_{i} 为组分i的摩尔分数; M_{i} 为组分 i 的相对分子质量; β 为与热物性参数相关的常数。

利用 NIST 发布的 REFPROP9.0 软件,计算 SF₆ 和 N₂的热物性参数。大气压强 0.1 MPa,环境温度 293.15 K 下的热物性参数如表 1 所示。

	表 1 热物性参数
Table 1	Physical and chemical parameters

参数	SF_6	N_2
$\rho/(\text{kg}\cdot\text{m}^{-3})$	6.064 0	1.149 6
$C_{\mathrm{p}} / [\mathrm{kJ} \cdot (\mathrm{kg} \cdot \mathrm{K})^{-1}]$	0.661 0	1.041 3
$C_v / [kJ \cdot (kg \cdot K)^{-1}]$	0.601 0	0.743 0
$\mu/(Pa\cdot s)$	1.199 2×10 ⁻⁵	1.757 2×10 ⁻⁵
$k / [\mathbf{W} \cdot (\mathbf{m} \cdot \mathbf{K})^{-1}]$	1.262×10^{-2}	2.547×10^{-2}

密度和温度之间的关系满足理想气体状态 方程:

$$\rho(T) = \rho_0 \frac{pT_0}{p_0 T} \tag{12}$$

导热系数和动力粘度满足 Sutherland 定律:

$$k(T) = k_0 \left(\frac{T}{T_0}\right)^{1.5} \frac{T_0 + S}{T + S}$$
(13)

$$\mu(T) = \mu_0 \left(\frac{T}{T_0}\right)^{1.5} \frac{T_0 + S}{T + S}$$
(14)

式中: ρ_0 为温度 T_0 时混合气体的密度; p_0 为温度 T_0 时混合气体的压强; k_0 为温度 T_0 时混合气体的导热 系数; μ_0 为温度 T_0 时混合气体的动力粘度; T_0 为参 考温度,值为 293.15 K; S 为 Sutherland 常数。

2 仿真结果与分析

利用 COMSOL 仿真软件建立三维电磁-流体-温 度场多物理场耦合的 GIL 模型,有限元模型主要分 为外部空气、壳体、绝缘气体和导体。模型的具体 参数如表 2 所示,其中 GIL 可以在短时耐受电流下 运行 2 s。

参数	数值
额定电压/kV	1 100
额定电流/kA	6.3
额定短时耐受电流/kA	63
额定峰值耐受电流/kA	170
标准直线单元母线长度/m	18
壳体外径/mm	900
导体外径/mm	200

表 2 1 100 kV GIL 参数 Table 2 Parameters of 1 100 kV GIL

三维模型可以描述径向和轴向的传热特性,图 2 为三维 GIL 模型仿真结果。如图 2(a) 所示,绝缘 子对温度场的影响被忽略。

图 2(a)中,温度场在求解域内对称分布,导体 温度最高为 359.88 K,外壳底部温度最低为 325.94 K,GIL 内部绝缘气体温度分布不均。由于气体受热 后向上流动,对流更强。绝缘气体的流速如图 2(b) 所示,加热的绝缘气体从导体垂直流向外壳,并沿 着外壳呈圆柱状流动,流向外壳底部。在此过程 中,绝缘气体的热量传递到外壳,绝缘气体被冷却 下沉到气体域的底部。然后,导体加热绝缘气体, 循环再次开始。因此,导体和外壳之间存在温差, 绝缘气体的上、下温度存在梯度,沿 GIL 轴向方向没 有温度变化。

此外,由于气体的自然对流和温度分布不均 匀,导体和外壳的温度分布从上到下逐渐减小,外 壳温差为6.92 K,导体则相差0.53 K。1 100 kV GIL 的工作环境为江底管廊,所以文中在考虑参考温度 选取时忽略了气体流动和日照的影响,选择外壳正 上方的温度作为参考。经仿真验证,额定短时耐受 电流和额定峰值耐受电流的温升在标准允许范围 内,这些电流突变引起的瞬间温升小于1 K。

为验证仿真模型的准确性,利用 TESTO 890 红 外测温仪在苏通 GIL 综合管廊进行红外测温,在负 载电流 1 000 A,管廊环境温度 291.2 K 时,测得 M₁ 点的温度为 293.55 K, M₂点的温度为 293.65 K, M₃ 点的温度为 293.35 K,实际红外测温如图 3 所示。 为进一步验证模型的有效性,不同条件下的测温结

果与仿真数据对比如表3所示。

图 3 红外测温 Fig.3 Infrared temperature measurement 表 3 红外测温数据和仿真结果对比

Table 3 Comparison of infrared temperature measurement data and simulation results

导体电 流/kA	环境温 度/K	3 次红外 测温温度/K	红外测温 均值/K	仿真 值/K	误差 /K
0.55	291.50	294.00,294.10,294.10	294.07	293.65	0.42
0.8	291.80	294.20,294.20,294.20	294.20	293.80	0.40
1.0	291.20	293.55,293.65,293.35	293.52	293.70	0.18
1.2	292.15	294.35,294.35,294.40	294.37	294.80	0.43
1.4	293.15	294.40,294.50,294.40	294.40	295.10	0.70

由表3可知,红外测温均值与仿真值误差小于 1K,证明了文中模型的有效性。

3 SF₆/N₂混合气体分析

由于 GIL 实际工作环境较为复杂,为了保证 GIL 的工作可靠性,有必要综合考虑 SF₆/N₂混合气 体在不同组分、不同条件下的热特性。控制变量法 可以研究多种影响因素的作用效果大小。因此,通 过控制和调整单一变量研究在不同的绝缘气体压 力、负载电流和环境温度下,SF₆/N₂不同的混合比对 GIL 导体和壳体温升的影响。影响因素和参数值如 表4 所示。

	表 4	影响因素
Table 4	Influenc	ing factors parameters

	5
影响因素	数值
绝缘气体压强/MPa	0.3,0.4,0.5,0.6
负载电流/kA	1,2,3,4,5,6.3
环境温度/K	243.15,253.15,263.15,273.15, 283.15,293.15,303.15,313.15

此外,SF₆/N₂的介电强度按归一化值考虑,包括 归一化压力、归一化数量和归一化本征介电强度。 根据 SF₆/N₂的特性,在相同的压强下当 SF₆含量大 于 20%时,混合气体的绝缘能力可以达到纯 SF₆的 70%~80%^[25],能够满足技术和环保要求。因此,文 中选择的 SF₆含量为 20%~100%。

3.1 绝缘气体压强

由于混合气体参数随混合气体压强的变化而 变化,考虑到混合气体的绝缘能力和 GIL 结构的强 度,文中的绝缘气体压强范围为 0.3~0.6 MPa,环境 温度为 293.15 K,负载电流为 6.3 kA,导体和壳体的 温升如图 4 所示。

Fig.4 Temperature rise of GIL under different pressure and different SF₆ content

如图 4 所示,0.6 MPa 时的温升为 4 组中最低的。需要指出的是,压强越大,导体和壳体的温升 越低,二者呈负相关。此外,在相同压强下,SF₆含量 与导体和壳体的温升呈负相关。当 SF₆含量小于 30%时,GIL 的温升趋势均明显下降,而当 SF₆含量 超过 70%时,随着 SF₆含量达到一定水平,温升没有 明显变化。

通过对比导体和壳体温升,发现导体对绝缘气体压强的变化更敏感。在相同的混合气体比例下,导体温度随着压强的增加而显著降低。因为气体密度随气体压强的增大而增大,传热系数也随之增加,这意味着绝缘气体可以交换更多的热量从而导致导体温度降低比外壳温度降低更加显著。

表 5 为温升值相同时的几组气体压强和混合气体比例。从表中可以看出,与相同温升值下的纯 SF₆相比,SF₆/N₂混合气体既保证了温升效果,又最 大程度减少了 SF₆的使用量。

表 5	稳	态时壳体	\$等温チ	十的压强和	混·	合气体は	北例
Table	5	Pressur	e and	proportion	of	gas mi	xture
for isot	ther	mal rise	of the	enclosure	at	steady	state

壳体温升/K	压强/MPa	SF ₆ 含量/%
	0.4	53
17.6	0.5	32
	1.6	25
	0.4	100
16.6	0.5	48
	0.6	37
15.8	0.5	100
	0.6	58

综上所述,增加绝缘气体压强有利于降低导体 温度,20%的 SF₆即具有良好的介电强度,然而,当 SF₆含量在 20%~30%之间时,GIL 温升曲线变化较 为明显。为了减少 SF₆的使用量,降低温升,建议在 GIL 应用中使用 SF₆含量 30%~70%的 SF₆混合气 体。但文中仅给出定性分析,实际应用中,具体的 压强须要根据混合气体的比例略作修改。

当绝缘气体压强为 0.4 MPa 时, 仿真得到的内 部绝缘气体的压强等值线如图 5 所示。由于 GIL 上 方温度高于下方, 压强会有 2×10⁻⁴ MPa 的微小差 异, 所以绝缘气体的压强在空间中认为是相等的。

3.2 负载电流

温度与焦耳热损耗直接相关,热交换、外壳感 应电流和涡流损耗、导体热损耗共同作用,导致导 体、外壳和绝缘气体温度升高。因此,电流是引起 温度变化的重要原因之一。

在 GIL 正常运行过程中, GIL 的负载电流在长

期运行期间不超过3 kA,因此仿真中的电流设置为 1 kA,2 kA,3 kA,4 kA,5 kA,6.3 kA,环境温度为 293.15 K,绝缘气体压强为0.4 MPa。

温升与电流变化有关,正如前文分析,不同负载电流和不同 SF₆含量下 GIL 温升如图 6 所示。

Fig.6 Temperature rise of GIL under different current and different SF₆ content

如图 6 所示,当电流小于 1 kA 时,SF₆/N₂的比例对温升的影响不大。当电流低于 3 kA 时,导体温升低于 15 K,同时外壳温升低于 10 K,在这种情况下,实际应用的混合气体比例应由其他因素共同决定。然而,当电流超过 3 kA 时,从温升变化的角度来看,建议 SF₆含量大于 30%。在上述 2 种情况下,60%SF₆到纯 SF₆之间的温升几乎保持不变。因此,在实际应用中,SF₆含量选取 60%~80%即可满足绝缘和温升要求。

在相同的气体组分下,导体和外壳的温度都与 负载电流呈非线性正相关。这是因为导体和外壳 的焦耳热损耗与负载电流呈非线性增长关系,所以 随着负载电流的增加,GIL 热量生成的速度加快,并 且导体和外壳之间的温差越来越明显。因此,实际 工程中应根据负载电流的最大值选择 SF6含量。

为了保证供电的可靠性,关键区域经常使用双 回路 GIL。因此,同时考虑了双回 GIL 供电线路中, 当一回线路的一相发生故障时,另一回线路须要承 担所有线路电流。假设长期运行时,每条线路的电流为3kA,如果线路Ⅰ的B相发生故障,线路Ⅱ须 要承载6kA的电流。

文中以 SF₆/N₂(其中 SF₆含量 60%)为例。故障 发生在 1.3×10⁴ s,线路 Ⅱ 的电流从 3 kA 增加到 6 kA,其温升如图 7 所示,当线路电流以 2 倍的幅值 突变后,导体的温升小于 6.45 K,壳体的温升约为 3.65 K。因此,温升结果表明当 SF₆含量超过 40% 时,GIL 可以承受线路电流的短期大幅增加。

Fig.7 The line temperature rise

3.3 环境温度

绝缘气体的传热性能对电气参数有重要意义, 混合气体参数 ρ , C_p , C_v , k, μ 都与环境温度有 关,进一步影响绝缘气体的热传导和自然对流。因 此,就不同环境温度下的 GIL 温升情况展开分析,不 同温度和不同 SF₆含量下 GIL 温升如图 8 所示。

Fig.8 Temperature rise of GIL under different temperature and different SF₆ content

由图 8 可知,随着 SF₆含量的增加,导体和外壳的温升呈下降趋势且导体温度的变化幅度较大。 不同环境温度下的导体温升曲线表明,当 SF₆含量 超过 40%时,温升变化趋势变得相对平缓。虽然外 壳的温度变化趋势略有不同,但当 SF₆的含量超过 70%时,导体和壳体的温升都变得平缓。因此,含量 略低于 70%的 SF₆的混合气体作为替代气体更为理 想。此外,当环境温度为 313.15 K 时,外壳温升低 于 25 K,导体温升低于 38 K。符合现行的国际标准 IEC 62271-1、国内标准 GB/T 22383—2017 和 GB/T 11022—2011 的要求。

4 结论

从替代纯 SF₆绝缘气体的角度出发,采用有限 元和多物理场耦合的方法分析了不同 SF₆含量下的 传热特性。通过建立三维轴对称 GIL 模型,研究了 不同影响因素下 SF₆/N₂的传热特性,具体分析了导 体和壳体的温升趋势。主要结论可归纳如下:

(1)绝缘气体压强和导体、壳体的温升有一定 的负相关关系,SF₆组分也呈现类似趋势。不同的绝 缘气体压强会导致导体的温度变化范围大于壳体。 因此建议 SF₆含量在 30% ~ 70%之间,压强应根据 SF₆含量略作修改。当保持 SF₆/N₂混合气体不变 时,导体和外壳的温度随着压强的增加而显著降低。

(2)如果设备长期运行期间电流超过3kA,建 议SF₆含量应选择在40%~60%之间;若设备长期运 行期间电流不超过3kA,建议SF₆含量应选择在 20%~40%之间;当在额定电流下运行时,SF₆含量应 高于60%。

(3)导体和壳体的温升随着 SF₆含量的增加呈 下降趋势,不同环境温度的趋势相似。当 SF₆含量 超过 40%时,温升变化趋势变得平缓,当 SF₆含量超 过 70%时,温升几乎不再发生变化。因此,当设备 运行在中低纬度时,SF₆含量建议在 40% ~ 70% 之 间;当设备运行在高纬度地区时,SF₆含量建议在 30%~40%之间。

此外,GIL 通常不会在极限温度下运行,由于在 设计设备时考虑了安全裕度,因此通常 SF₆含量不 低于建议值的 70% 就能够满足 GIL 设备的绝缘和 温升要求。根据对 GIL 混合气体热特性的定性分 析,在实际应用中,可以定量分析不同的影响因素, 得到最佳的 SF₆/N₂含量,为实际工程中,在不同运 行条件下选择合适的 SF₆/N₂混合比提供依据,从而 减少 SF₆的使用量,减少电力设备对环境的影响。

本文得到国网冀北电力有限公司科技项目"基

于边缘计算的 GIS 温度反演及过热故障诊断" (830107200003)资助,谨此致谢!

参考文献:

[1] 陈敬友,高兵,杨帆,等. 气体绝缘输电线路温升数值计算及
 绝缘气体换热能力[J]. 高电压技术, 2020, 46 (11):
 4042-4051.

CHEN Jingyou, GAO Bing, YANG Fan, et al. Numerical calculation of temperature rise of gas insulated transmission lines and heat transfer capability of insulating gases[J]. High Voltage Engineering, 2020, 46(11):4042-4051.

- [2] 周文俊,郑宇,高克利,等. 环保型绝缘气体电气特性研究进展[J]. 高电压技术,2018,44(10):3114-3124.
 ZHOU Wenjun, ZHENG Yu, GAO Keli, et al. Progress in researching electrical characteristics of environment-friendly insulating gases [J]. High Voltage Engineering, 2018, 44 (10): 3114-3124.
- [3] 乔宇娇,唐泽华,高鹏,等. 不同环境因素下 GIL 温度场分布 特性研究[J]. 电力工程技术,2020,39(3):136-143,150.
 QIAO Yujiao,TANG Zehua,GAO Peng, et al. Distribution characteristics of GIL temperature field under different environmental factors [J]. Electric Power Engineering Technology, 2020,39(3):136-143,150.
- [4] KIEFFEL Y, IRWIN T, PONCHON P, et al. Green gas to replace SF₆ in electrical grids[J]. IEEE Power and Energy Magazine, 2016, 14(2): 32-39.
- [5] KIEFFEL Y, BIQUEZ F, PONCHON P, et al. SF₆ alternative development for high voltage switchgears [C]//2015 IEEE Power & Energy Society General Meeting. Denver, CO, USA. IEEE, 2015;1-5.
- [6] LI X W, ZHAO H, MURPHY A B. SF₆-alternative gases for application in gas-insulated switchgear[J]. Journal of Physics D: Applied Physics, 2018, 51(15):153001.
- [7] MOHD JAMIL M K, OHTSUKA S, HIKITA M, et al. Gas byproducts of CF₃I under AC partial discharge[J]. Journal of Electrostatics, 2011, 69(6):611-617.
- [8] 张然,王珏,严萍. 应用于直流 GIL 中低混合比 c-C₄F₈/N₂ 混 合气体的绝缘特性[J]. 高电压技术, 2018, 44(8): 2672-2678.

ZHANG Ran, WANG Jue, YAN Ping. Insulation characteristics of $c-C_4F_8/N_2$ with less $c-C_4F_8$ applied to HVDC-GIL[J]. High Voltage Engineering, 2018, 44(8): 2672-2678.

- [9] XIAO S, LI Y, ZHANG X X, et al. Formation mechanism of CF₃I discharge components and effect of oxygen on decomposition [J]. Journal of Physics D: Applied Physics, 2017, 50 (15):155601.
- [10] 张晓星,田双双,肖淞,等. SF₆ 替代气体研究现状综述[J]. 电工技术学报,2018,33(12):2883-2893.
 ZHANG Xiaoxing, TIAN Shuangshuang, XIAO Song, et al. A review study of SF₆ substitute gases[J]. Transactions of China Electrotechnical Society,2018,33(12):2883-2893.
- [11] 颜湘莲,高克利,郑宇,等. SF。混合气体及替代气体研究进

展[J]. 电网技术,2018,42(6):1837-1844.

YAN Xianglian, GAO Keli, ZHENG Yu, et al. Progress of gas mixture and alternative gas of SF₆[J]. Power System Technology, 2018, 42(6):1837-1844.

- [12] 李冰,肖登明,赵谡,等. 第二代气体绝缘输电线路的温升数值计算[J]. 电工技术学报,2017,32(13):271-276.
 LI Bing, XIAO Dengming, ZHAO Su, et al. Temperature rise numerical calculation of the second generation gas insulated transmission line [J]. Transactions of China Electrotechnical Society, 2017,32(13):271-276.
- [13] 高克利,颜湘莲,王浩,等.环保型气体绝缘输电线路(GIL) 技术发展[J].高电压技术,2018,44(10):3105-3113.
 GAO Keli,YAN Xianglian,WANG Hao, et al. Progress in environment-friendly gas-insulated transmission line(GIL)[J].
 High Voltage Engineering,2018,44(10):3105-3113.
- [14] ZHAO H, LI X W, TANG N, et al. Dielectric properties of fluoronitriles/CO₂ and SF₆/N₂ mixtures as a possible SF₆-substitute gas[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(4); 1332-1339.
- $[\,15\,]$ GUO C,ZHANG Q G,YOU H Y, et al. Influence of electric field non-uniformity on breakdown characteristics in $\rm SF_6/N_2$ gas mixtures under lightning impulse[J]. 2016 IEEE International Power Modulator and High Voltage Conference (IPMH-VC),2016:287-291.
- [16] STA-AANENSEN N S, RUNDE M, JONSSON E, et al. Empirical relationships between air-load break switch parameters and interrupting performance[J]. IEEE Transactions on Power Delivery, 2016, 31(1):278-285.
- $\label{eq:linear} \begin{array}{l} [17] \mbox{ LI H,ZHENG Y,ZHANG P, et al. Effect of temperature on insulation properties of F_6/N_2 mixed gas under AC voltage[J]. \\ \mbox{ IEEE Transactions on Plasma Science, 2020, 48(4): 914-920. } \end{array}$
- [18] 冯慈璋,马西奎. 工程电磁场导论[M]. 北京:高等教育出版社,2000.

FENG Cizhang, MA Xikui. An introduction to engineering electromagnetic fields[M]. Beijing:Higher Education Press, 2000.

- [19] KUROYANAGI Y, TOYA A, HAYASHI T, et al. Construction of 8 000 A class 275 kV gas insulated transmission line [J].
 IEEE Transactions on Power Delivery, 1990, 5(1):14-20.
- [20] 宋帆. 特高压 GIS 设备的涡流及其相关问题的研究[D]. 沈阳:沈阳工业大学,2009.
 SONG Fan. Research on the eddy current field and related problems for ultra-high voltage GIS equipments [D]. Shen-yang; Shenyang University of Technology, 2009.
- [21] 范镇南,张德威,陈显坡,等. 用电磁场和流场模型计算 GIS 母线损耗发热[J]. 高电压技术,2009,35(12):3016-3021.
 FAN Zhennan,ZHANG Dewei,CHEN Xianpo, et al. Calculation of loss and heat of GIS bus bar using electromagnetic field and fluid field[J]. High Voltage Engineering,2009,35(12): 3016-3021.
- [22] 宋超然. 高压交流 GIL 多物理场耦合分析及在线监测系统 设计[D]. 徐州:中国矿业大学,2019.
 SONG Chaoran. Analysis of coupling filed for GIL and develop-

ment of the monitoring system [D]. Xuzhou: China University of Mining and Technology, 2019.

[23] 高璐,贾云飞,汲胜昌,等.环保型1 100 kV GIL 用三支柱
 绝缘子多物理场耦合仿真及校核[J].高电压技术,2020,
 46(3):987-996.

GAO Lu, JIA Yunfei, JI Shengchang, et al. Multi-physical field coupling simulation and verification of tri-post insulator on environment-friendly 1 100 kV GIL[J]. High Voltage Engineering, 2020, 46(3):987-996.

 [24] 吴晓文,舒乃秋,李洪涛,等. 气体绝缘输电线路温升数值 计算及相关因素分析[J]. 电工技术学报,2013,28(1):
 65-72.

WU Xiaowen, SHU Naiqiu, LI Hongtao, et al. Temperature rise numerical calculation and correlative factors analysis of gas-insulated transmission lines [J]. Transactions of China Electrotechnical Society, 2013, 28(1):65-72.

[25] CHRISTOPHOROU L G. Gases for electrical insulation and arc interruption[R]. National Bureau of Standards, 1997.

作者简介:

庞乐乐(1988),女,硕士,工程师,从事电 网一次设备运维及检修试验相关工作(Email:850629695@qq.com);

杨文勇(1979),男,学士,高级工程师,从 事电网一次设备运维及检修试验相关工作; 李鹏飞(1989),男,硕士,工程师,从事电 网一次设备运维及检修试验相关工作。

庞乐乐

N₂ proportion in GIL based on heat characteristics of gas mixture

PANG Lele¹, YANG Wenyong¹, LI Pengfei¹, GUO Xiaofei¹, GAO Peng², LIANG Rui²

(1. State Grid Jibei Electric Power Co., Ltd. Zhangjiakou Power Supply Company, Zhangjiakou 075000, China;

2. School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China) **Abstract**: SF_6/N_2 gas mixture is considered as one of the most promising gases to replace SF_6 because of its good insulation performance and environmental benefits. However, there is a lack of research on the mixing ratio of SF_6/N_2 gas mixture in different conditions. Under the premise of ensuring the insulation level of gas-insulated transmission lines (GLL), a multiphysical field coupling calculation model is established. From the perspective of heat characteristics of gas mixture, the relationship between SF_6/N_2 mixing ratio and GLL temperature rise under different insulating gas pressure, load current and ambient temperature is analyzed to determine the appropriate SF_6/N_2 mixture ratio under different conditions. The results show that there is a negative correlation between the insulation gas pressure (or the SF_6 content) and GLL temperature rise at the same pressure. The SF_6 content is suggested to be in the range of $40\% \sim 60\%$ when the load current exceeds 3 kA for a long period of time, $40\% \sim 70\%$ when the equipment is running in the middle and low latitudes, and $30\% \sim 40\%$ when the equipment is in the high latitudes. In addition, considering the safety margin, the insulation and temperature rise requirements of GLL can be met when SF_6 content is not less than 70% of the recommended value.

Keywords: gas-insulated transmission lines (GIL); SF_6/N_2 gas mixture; gas component; gas insulation; finite element method; heat characteristics analysis

(编辑 方晶)