DOI:10.12158/j.2096-3203.2021.06.007

电网电压前馈控制 VSG 的阻抗建模与并网稳定性分析

杨伊茜¹,陈杰¹,万雨朦¹,章新颖¹,王开春² (1.南京航空航天大学自动化学院,江苏南京 211106; 2.北京精密机电控制设备研究所,北京 100076)

摘 要:针对电网电压谐波背景下虚拟同步发电机(VSC)并网电流畸变及并网稳定性下降问题,文中提出了一种 基于电流环的电网电压前馈控制策略。从入网电流传递函数出发,设计电压前馈控制模块以消除背景谐波的影 响,并基于谐波线性化方法分别建立加入前馈控制前后的 VSG 序阻抗模型,对其在各频段阻抗特性及并网稳定性 上的影响进行对比分析。结果表明,引入该前馈控制等同于在 VSG 输出端并联虚拟阻抗,输出阻抗的高频段幅频 曲线上移,可以改善非理想电网条件下的并网电流质量。同时,中高频段相频特性由容性矫正为感性,可以消除并 网条件下的谐波振荡风险,提高交互系统稳定性。最后,基于实时仿真实验平台(RT-LAB)硬件在环实验验证了文 中控制策略及理论分析的正确性。

关键词:虚拟同步发电机(VSG);背景谐波;电网电压前馈控制;谐波线性化;阻抗建模;并网稳定性中图分类号:TM464文献标志码:A文章编号:2096-3203(2021)06-0052-10

0 引言

随着分布式电源在电力系统中渗透率的不断 提高,传统电网将逐步发展成为电力电子变换装置 占主导的低惯性、欠阻尼网络,电网调频调压难度 增加,系统稳定性受到影响^[1-2]。为解决上述问题, 国内外学者提出了虚拟同步发电机(virtual synchronous generator, VSG)技术^[3-6],通过对电力电子并 网装置施以特定的控制,模拟同步发电机(synchronous generator, SG)的外特性。

目前,针对 VSG 的虚拟惯量控制^[4,6]、有功无功 功率支撑^[7]、小信号建模^[8-10]、参数优化设计^[10-11] 等已开展了卓有成效的研究,但鲜有研究涉及电网 含背景谐波的非理想条件下 VSG 对系统鲁棒性的 影响。

针对背景谐波条件下的控制策略,如多谐振补 偿器^[12-15]、超前校正环节^[16]、电网电压前馈控 制^[17-18]等已有诸多报道。文献[17]研究了 LCL 型 逆变器的电网电压前馈方案,指出其可以有效降低 电网电压引起的电流谐波;文献[18]从虚拟阻抗角 度进行分析,指出前馈控制可以改变逆变器外阻抗 特性,从而改善并网稳定性。但是上述文献仅针对 常规电流控制型并网逆变器,并未涉及 VSG 技术。 同时,为了推动 VSG 在分布式电网中的应用,国内 外学者对 VSG 与电网之间的交互规律展开研究。 文献[19—20]对比分析了电压控制型 VSG 与传统

收稿日期:2021-07-09;修回日期:2021-09-18 基金项目:国家自然科学基金资助项目(51777095) 电流源型逆变器、电流控制型 VSG 的阻抗特性,发现电压控制型 VSG 的输出阻抗在中低频段呈感性,与电网交互时具有更加稳定的特性;但在高频段呈 容性,并网时存在谐波振荡的风险。

针对以上问题,文中提出了一种基于电流环的 VSG 电网电压前馈控制。首先,分析了 VSG 工作原 理及前馈函数的设计原则,采用谐波线性化方法, 推导有、无电网电压前馈控制的 VSG 输出阻抗模 型。然后,研究 VSG 在不同频段下的阻抗特性与各 控制环节的关系,发现电网电压前馈控制可以有效 抑制 VSG 接入电网时的谐波振荡,提高系统稳定 性。最后,通过仿真和实验验证了阻抗模型以及相 关分析的正确性。

1 VSG 的电网电压前馈控制

1.1 VSG 拓扑结构

图 1 为 VSG 的主电路拓扑及控制框图。其中, V_{dc} 为逆变器直流侧电压; S_{a1} , S_{b1} , S_{c1} , S_{a2} , S_{b2} , S_{c2} 为 开关管控制信号; e_{abc} 为逆变器三相桥臂输出电压; i_{1a} , i_{1b} , i_{1c} 为电感电流; v_{oa} , v_{ob} , v_{oc} 为输出端电压; i_{ga} , i_{gb} , i_{gc} 为三相并网电流; v_{ga} , v_{gb} , v_{gc} 为电网电压; L_{f} , r_{1} 分别为滤波电感及其寄生电阻; C_{f} , r_{c} 分别为滤波电 容及阻尼电阻; Z_{g} 为电网等效阻抗; P_{set} , Q_{set} 分别为 给定有功功率和给定无功功率; PCC 为公共连 接点。

根据瞬时功率理论可以计算得到有功和无功 功率的表达式:

$$\begin{cases} P_e = 1.5(v_{\alpha}i_{\alpha} + v_{\beta}i_{\beta}) \\ Q_e = 1.5(v_{\beta}i_{\alpha} - v_{\alpha}i_{\beta}) \end{cases}$$
(1)

Fig.1 Main circuit topology and control diagram of VSG 式中: i_{α} , i_{β} 分别为 $\alpha\beta$ 坐标系下 VSG 的输出电流; v_{α} , v_{β} 分别为 $\alpha\beta$ 坐标系下 VSG 的输出电压; P_{e} , Q_{e} 分别为实际输出有功功率和无功功率。

VSG 的有功环路模拟 SG 机械特性,引入虚拟 惯量,具备惯量调节和一次调频功能;无功环路模 拟 SG 电磁特性,具备一次调压功能。两者的控制 方程如下:

$$\theta(s) = (T_{\text{set}} - T_{\text{e}} + D_{\text{p}}\omega_{\text{r}}) / [s(Js + D_{\text{p}})]$$
(2)

 $E_{m}(s) = [Q_{set} - Q_{e} + D_{q}(V_{r} - V_{m})]/(Ks)$ (3) 式中:s 为复变量;J 为虚拟转动惯量;D_p为阻尼系 数; ω_{r} 为电网额定角频率; T_{set} , T_{e} 分别为给定转矩和 电磁转矩,其中 $T_{set} = P_{set}/\omega_{r}$, $T_{e} = P_{e}/\omega \approx P_{e}/\omega_{r}$; θ 为 VSG 输出电压调制波的相位;K 为励磁调节器积分 系数; D_{q} 为调压系数; V_{r} , V_{m} 分别为给定电压幅值和 VSG 输出电压幅值; E_{m} 为励磁内电势幅值,即 VSG 输出电压调制波的幅值。

有功、无功环路分别输出相位信号 θ 和幅值信 号 $E_{\rm m}$,两者构造得到 VSG 的桥臂电压 $e_{\rm abc}$,作为空 间矢量脉宽调制(space vector pulse width modula-

tion,SVPWM)的调制信号:

$$\begin{cases} e_{a} = E_{m} \cos \theta \\ e_{b} = E_{m} \cos(\theta - 2\pi/3) \\ e_{c} = E_{m} \cos(\theta + 2\pi/3) \end{cases}$$
(4)

VSG 的滤波电感相当于 SG 的定子绕组,桥臂 电压相当于内电势,且与电网电压之间存在一定的 相角差 φ ,其中 φ =arcsin[$2\omega_r L_r P_{set}/(3E_m V_r)$]。

1.2 电网电压前馈控制

图 2 为具有电网电压前馈控制的 VSG 结构框 图,电网电压前馈点设置在电流控制器前后^[21-22]。 为便于分析,下文将该控制称为带前馈控制。

根据图 2 可进一步推导出等效控制框图,如图 3 所示,其中 i_c 为电容电流; K_{pwm} 为逆变器的输出调制比,可做归一化处理; $G_{PI}(s)$ 为电流调节器; $G_1(s)$, $G_2(s)$ 为电网电压前馈函数。

根据图 3,可以推导得到并网电流的表达式: $i_{g} = G_{PI}(s)i_{ref}/(sL_{f} + r_{1} + G_{PI}(s)) + G'(s)v_{g}$ (5)

其中:

$$G'(s) = \{ [G_1(s)(sC_fr_c + 1) - sC_f] G_{PI}(s) + [G_2(s)(sC_fr_c + 1) - (C_fL_fs^2 + sC_f(r_c + r_1) + 1)] \} / [(sL + r + G_c(s))(sC_fr_c + 1)]]$$

$$\left\lfloor \left(sL_{\rm f} + r_{\rm I} + G_{\rm PI}(s) \right) \left(sC_{\rm f}r_{\rm c} + 1 \right) \right\rfloor \tag{6}$$

由式(5)可知, VSG 的输出电流不仅受电流环 指令 i_{ref} 控制, 还与电网电压 v_g 相关。当 G'(s) = 0时,可得前馈函数 $G_1(s)$ 和 $G_2(s)$, 如式(7)所示, 此 时 i_g 与 v_g 无关, 消除了电网电压背景谐波对并网电 流的影响。

$$\begin{cases} G_{1}(s) = sC_{f}/(sC_{f}r_{c} + 1) \\ G_{2}(s) = [C_{f}L_{f}s^{2} + sC_{f}(r_{c} + r_{1}) + 1]/(sC_{f}r_{c} + 1) \end{cases}$$
(7)

2 正负序阻抗建模及分析

2.1 序阻抗模型推导

利用谐波线性化和对称分量法对 VSG 的正、负 序输出阻抗模型进行推导。

图 3 VSG 带前馈控制等效结构框图 Fig.3 Equivalent block diagram of VSG with feedforward control

在三相并网逆变器的并网端注入*f*_p频次正序小 信号扰动后,以A相为例,VSG的并网电压和并网 电流为:

$$v_{ga}(t) = V_1 \cos(2\pi f_1 t) + V_p \cos(2\pi f_p t + \varphi_{v,p})$$
(8)
$$i_{ga}(t) = I_1 \cos(2\pi f_1 t + \varphi_{i,1}) + I_p \cos(2\pi f_p t + \varphi_{i,p})$$
(9)

式中: V_1 , V_p 分别为基波电压和正序扰动电压的峰 值; I_1 , I_p 分别为基波电流和正序扰动电流的峰值; f_1 , f_p 分别为基频和正序扰动频率; $\varphi_{v,p}$ 为正序扰动电 压初相角; $\varphi_{i,1}$, $\varphi_{i,p}$ 分别为基波电流和正序扰动电流 的初相角。

对并网电压和并网电流进行坐标变换,得到其 频域表达式:

$$v_{g\alpha}[f] = \begin{cases} V_1 & f = \pm f_1 \\ V_p & f = \pm f_p \end{cases}$$
(10)

$$v_{g\beta}[f] = \begin{cases} \mp \mathbf{j} \mathbf{V}_1 & f = \pm f_1 \\ \mp \mathbf{j} \mathbf{V}_p & f = \pm f_p \end{cases}$$
(11)

$$i_{g\alpha}[f] = \begin{cases} \boldsymbol{I}_1 & f = \pm f_1 \\ \boldsymbol{I}_p & f = \pm f_p \end{cases}$$
(12)

$$i_{gg}[f] = \begin{cases} \mp \mathbf{j} \mathbf{I}_1 & f = \pm f_1 \\ \mp \mathbf{j} \mathbf{I}_p & f = \pm f_p \end{cases}$$
(13)

其中:

$$\begin{cases} V_1 = V_1/2 \\ V_p = (V_p/2) e^{\pm j\varphi_{v,p}} \end{cases}$$
(14)

$$\begin{cases} I_{1} = (I_{1}/2) e^{\pm j\varphi_{i,1}} \\ I_{p} = (I_{p}/2) e^{\pm j\varphi_{i,p}} \end{cases}$$
(15)

将式(10)一式(13)代入式(1),并忽略高次非 线性小信号量,得到有功和无功功率在频域的表 达式:

$$P_{e}[f] = \begin{cases} 3(V_{1}^{*}I_{1} + V_{1}I_{1}^{*} + V_{p}^{*}I_{p} + V_{p}I_{p}^{*}) & f = 0\\ 3(V_{1}^{*}I_{p} + V_{p}I_{1}^{*}) & f = \pm (f_{p} - f_{1}) \end{cases}$$
(16)

$$Q_{e}[f] = \begin{cases} 3j(V_{1}^{*}I_{1} - V_{1}I_{1}^{*} + V_{p}^{*}I_{p} - V_{p}I_{p}^{*}) & f = 0\\ \pm 3j(V_{1}^{*}I_{p} - V_{p}I_{1}^{*}) & f = \pm (f_{p} - f_{1}) \end{cases}$$
(17)

其中,上标"*"表示复数的共轭。

将式(16)和式(17)分别代人式(2)和式(3), 忽略二次项小信号量,得 *θ* 和 *E*_m在频域的表达式:

$$\theta[f] = \\ \begin{cases} N(s) \left[3(V_1^* I_1 + V_1 I_1^*) / \omega_r - P_{set} / \omega_r - D_p \omega_r \right] \\ f = 0 \\ 3N(s) (V_1^* I_p + V_p I_1^*) / \omega_r \quad f = \pm (f_p - f_1) \end{cases}$$
(18)

$$E_{\rm m}[f] = K_{\rm m}[f] = \int_{\rm r}^{T(s)} [3j(V_1^* I_1 - V_1 I_1^*) - Q_{\rm set} - D_{\rm q}(V_{\rm r} - V_{\rm m})] f = 0$$

$$M(s) V_{\rm p} \pm 3jT(s) (V_1^* I_{\rm p} - V_{\rm p} I_1^*) \quad f = \pm (f_{\rm p} - f_1)$$
(19)

其中:

$$\begin{cases} N(s) = -1/(Js^{2} + D_{p}s) \\ T(s) = -1/(Ks) \\ M(s) = -D_{q}/(Ks) \end{cases}$$
(20)

对式(4)的A相进行小信号分析,有:

$$e_{a} = (E_{m} + \hat{E}_{m})\cos(\theta + \hat{\theta})$$
(21)

式中: \hat{E}_{m} , $\hat{\theta}$ 为三相调制波的电压幅值和相角的小信号。通过简化, A 相电压调制小信号为:

$$\hat{e}_{a} = \hat{E}_{m} \cos \theta - E_{m} \hat{\theta} \sin \theta \qquad (22)$$

将式(18)和式(19)代入式(22),可得到 *f*_p频次下 A 相电压调制小信号,见式(23)。

$$\hat{e}_{a}[\pm f_{p}] = \pm \frac{3E_{m}}{2\omega_{r}} je^{\pm j\varphi} N(s \mp j2\pi f) (\boldsymbol{V}_{1}^{*}\boldsymbol{I}_{p} + \boldsymbol{V}_{p}\boldsymbol{I}_{1}^{*}) \pm \frac{3}{2} je^{\pm j\varphi} T(s \mp j2\pi f_{1}) (\boldsymbol{V}_{1}^{*}\boldsymbol{I}_{p} - \boldsymbol{V}_{p}\boldsymbol{I}_{1}^{*}) + \frac{e^{\pm j\varphi}}{2} M(s \mp j2\pi f_{1}) \boldsymbol{V}_{p}$$
(23)

当 VSG 星型连接且对称运行时, VSG 输出阻抗 可用电压扰动及其激励产生的电流响应计算得到。 A 相电流响应等效电路如图 4 所示。

 $\hat{v}_{a}[f_{p}]$ 和 $\hat{i}_{a}[f_{p}]$ 分别为 f_{p} 频次的电压扰动和电流响应,可得:

$$\hat{E}_{aref}[f_p] = (\hat{e}_a[f_p] - \hat{v}_a[f_p]) / (sL_f + r_l)$$
 (24)

经图 3 前馈控制后的 A 相输出电压调制波为 式(25)。再结合图 4,得到具有电网电压前馈控制 VSG 的正序输出阻抗模型,如式(26)所示,同理计 算得到并网端注入f_n频次负序小信号扰动的负序阻

图 4 f_p频次下 A 相电流响应等效电路 Fig.4 Equivalent circuit of A phase current response at f_p

抗模型,如式(27)所示。为便于比较,同时推导出 了无电网电压前馈的 VSG 正负序输出阻抗模型,见 式(28)和式(29)。

$$E_{a}[\pm f_{p}] = [(\hat{e}_{a}[f_{p}] - V_{p})/(sL_{f} + r_{1}) - I_{p}]G_{PI}(s \mp j2\pi f_{1}) + C_{f}L_{f}s^{2} + sC_{f}(r_{c} + r_{1}) + 1]V_{p}/(sC_{f}r_{c} + 1)$$
(25)

$$Z_{\rm p}(s) = \frac{A(s) - \frac{3}{4}V_{\rm 1} {\rm je}^{{\rm j}\varphi}B(s)}{1 - \frac{1}{2}{\rm e}^{{\rm j}\varphi}M(s - {\rm j}2\pi f_{\rm 1}) + \frac{3}{4}I_{\rm 1} {\rm je}^{{\rm j}(\varphi - \varphi_{\rm i,1})}C(s)}$$
(26)

$$Z_{n}(s) = A(s) + \frac{3}{4}V_{1}je^{-j\varphi}B(s)$$

$$1 - \frac{1}{2}e^{-j\varphi}M(s + j2\pi f_{1}) - \frac{3}{4}I_{1}je^{-j(\varphi-\varphi_{1})}C(s)$$
(27)

$$\frac{z_{p1}(s) - sL_{f} + r_{1} - \frac{3}{4}V_{1}je^{j\varphi}B(s)}{R(s) - \frac{e^{j\varphi}}{2}M(s - j2\pi f_{1}) + \frac{3}{4}I_{1}je^{j(\varphi - \varphi_{i,1})}C(s)}$$
(28)

$$Z_{n1}(s) = \frac{sL_{f} + r_{1} + \frac{3}{4}V_{1}je^{-j\varphi}B(s)}{R(s) - \frac{e^{-j\varphi}}{2}M(s + j2\pi f_{1}) - \frac{3}{4}I_{1}je^{-j(\varphi-\varphi_{1},1)}C(s)}$$
(29)

其中:

$$G_{\rm PI}(s) = k_{\rm p} + k_{\rm i}/s \qquad (30)$$
$$A(s) =$$

$$\begin{cases} \frac{(sL_{\rm f} + r_{\rm 1})(sL_{\rm f} + r_{\rm 1} + G_{\rm PI}(s - j2\pi f_{\rm 1}))}{G_{\rm PI}(s - j2\pi f_{\rm 1})} & f = f_{\rm p} \\ \frac{(sL_{\rm f} + r_{\rm 1})(sL_{\rm f} + r_{\rm 1} + G_{\rm PI}(s + j2\pi f_{\rm 1}))}{G_{\rm PI}(s + j2\pi f_{\rm 1})} & f = f_{\rm n} \end{cases}$$

$$(31)$$

$$B(s) = \begin{cases} T(s - j2\pi f_1) + \frac{E_m}{\omega_r} N(s - j2\pi f_1) & f = f_p \\ T(s + j2\pi f_1) + \frac{E_m}{\omega_r} N(s + j2\pi f_1) & f = f_n \end{cases}$$
(32)

$$C(s) = \begin{cases} T(s - j2\pi f_1) - \frac{E_m}{\omega_r} N(s - j2\pi f_1) & f = f_p \\ T(s + j2\pi f_1) - \frac{E_m}{\omega_r} N(s + j2\pi f_1) & f = f_n \end{cases}$$
(33)
$$R(s) = (L_f C_f s^2 + r_1 C_f s + r_c C_f s + 1) / (r_c C_f s + 1)$$

2.2 阻抗特性分析

依据表1参数数据绘制有、无电网电压前馈控制的输出阻抗模型对比图,如图5所示。

表 1 VSG 主要参数 Table 1 Main parameters of the VSG

	-		
参数	数值	参数	数值
阻尼系数 D_p	10	直流侧电压 V _{dc} /V	700
虚拟转动惯量 J	0.02	额定电压幅值 $E_{\rm m}/V$	311
调压系数 D_q	200	滤波电感 L _f /mH	2
励磁调节积分系数 K	6	电感阻尼电阻 r_l/Ω	0.3
额定有功功率 P_{set} / W	6 000	滤波电容 C _f /µF	20
额定无功功率 $Q_{\rm set}/{ m var}$	0	电容阻尼电阻 r_c/Ω	1
开关频率f _s /kHz	20	电流环比例系数 k _p	6
基波频率 f_1/Hz	50	电流环积分系数 k_i	11 000

由图 5 可知,在低频段 2 种控制策略下的阻抗 模型曲线完全重合,而在高频段带前馈控制的阻抗 模型由容性提升为感性。针对各控制环节与阻抗 模型的关系有如下分析。

(1)功率外环与阻抗模型的关系。VSG 低频 段阻抗特性与电流内环和电网电压前馈控制无关, 仅表现为功率外环特性,受功率外环控制参数影响。

(2) 电流内环与阻抗模型的关系。当扰动频率 f_p很高时,s 趋于无穷,表达式 T(s),N(s),M(s)以及 PI 调节器中的积分项 k_i/s 趋于零,式(26)和式
(27)的正负序阻抗模型可简化为式(35)。可知,高频段阻抗曲线主要受滤波电感 L_i以及电流环比例调节系数 k_p影响。

$$Z'(s) = \frac{(sL_{\rm f} + r_{\rm i})(sL_{\rm f} + r_{\rm i} + k_{\rm p})}{k_{\rm p}} \qquad (35)$$

图 6 和图 7 表现了带前馈控制阻抗特性曲线与 电流内环 PI 控制器的比例系数 k_p、积分系数 k_i之间 的关系。结合两图与式(35)可知,当 k_p减小到一定 程度,或者 k_i增大至一定程度时,相位可能过大,造 成谐波振荡;k_p对 10 kHz 以上的频段阻抗幅值有影 响,相位无影响,且相位最终都趋近于 180°。

Fig.6 Relationship between k_p and output impedance of VSG with feedforward control

(3)前馈环节与阻抗模型的关系。根据图 3 中 电网电压前馈控制,可以得到 VSG 的等效控制框 图,如图 8 所示。前馈控制传递函数可等效为虚拟

图 7 k 与带前馈控制 VSG 输出阻抗的关系

Fig.7 Relationship between *k*_i and output impedance of VSG with feedforward control

导纳,与电流环输出阻抗并联,从而对 VSG 输出阻抗产生影响。

图 8 前馈控制下的 VSG 等效控制框图

Fig.8 Equivalent control block diagram of VSG with feedforward control

图 8 中各等效传递函数分别为:

$$G_{x1}(s) = \frac{G_{PI}(s)}{(sL_{f} + r_{1})H(s)}$$
(36)

$$G_{x2}(s) = \frac{H(s)}{sL_{\rm f} + r_{\rm i} + G_{\rm Pl}(s)}$$
(37)

$$H(s) = \left(\frac{1}{sL_{\rm f} + r_{\rm 1}} + \frac{sC_{\rm f}}{sC_{\rm f}r_{\rm c} + 1}\right)G_{\rm PI}(s) + R(s)$$
(38)

$$H_{1}(s) = \frac{G_{\rm PI}(s)}{sL_{\rm f} + r_{\rm l} + G_{\rm PI}(s)}$$
(39)

$$H_2(s) = \frac{1}{sL_{\rm f} + r_{\rm l} + G_{\rm PI}(s)}$$
(40)

为了分析前馈函数对阻抗的作用,结合式(7) 可得前馈传递函数的伯德图,如图 9 所示。由图可 知, $G_1(s)$ 对小信号始终衰减,而 $G_2(s)$ 对 VSG 的阻 抗特性高频小信号有放大作用,可改善调制波波 形。同时, $G_2(s)$ 导致相位超前,改变 VSG 阻抗高频 段呈容性的特点,使相位大于 0°,提高其与电网阻 抗幅频曲线交截点处的相角裕度,改善并网稳定性。

3 并网稳定性分析

当 VSG 并网时,由阻抗分析法^[23]可知,系统的

图 9 电网电压前馈函数伯德图

Fig.9 Bode diagram of grid voltage feedforward function 稳定性可通过判断电网阻抗与 VSG 输出阻抗比值 $Z_g(s)/Z_o(s)$ 是否满足奈奎斯特稳定判据进行证 明。当 $Z_g(s)$ 与 $Z_o(s)$ 的幅频曲线相交频率点处的 相角裕度 $\gamma = 180^\circ - | \angle Z_g(s) - \angle Z_o(s) | > 0^\circ$ 时,系 统稳定。在工程应用中,为增加交互系统的鲁棒 性,通常要求 $\gamma > 30^\circ$ 。

3.1 无前馈控制时的 VSG 并网稳定性

无前馈控制时的 VSG 正负序阻抗与电网阻抗 曲线如图 10 所示,电网阻抗值 L_g分别取为 3 mH,8 mH 和 14 mH。

通过分析阻抗幅频曲线交截点处的相位裕度 可以发现,当电网阻抗 L_g =3 mH时,受LC滤波谐振 的影响,VSG高频段正负序阻抗均呈容性,电网阻 抗与正负序阻抗在1028 Hz产生交截,交互系统的

图 10 无前馈控制下的 VSG 与电网阻抗特性曲线 Fig.10 Sequence impedance curves of VSG without feedforward control and grid

相位裕度 γ=5.6°,不满足实际工程的稳定性要求, 若电网在该频次含有很小的背景谐波则极易引起 整个系统的振荡。而当电网阻抗 L_g=14 mH 时,高 频段交截点的相位裕度满足 γ>30°,系统能够稳定 运行。由此可知,当电网阻抗 L_g较小时,其与 VSG 阻抗模型在高频段幅频曲线交截点处的相角裕度 不满足工程稳定性要求。在实际应用中,通常通过 适当增加阻尼电阻 r_e以改善并网系统的高频谐振, 增加系统稳定性^[24-26]。

3.2 带前馈控制时的 VSG 并网稳定性

带前馈控制时的 VSG 正负序阻抗与电网阻抗 曲线如图 11 所示,通过分析图中正负序阻抗幅频曲 线交截点处的相位裕度可以发现,交互系统均满足 γ>30°,即无论电压阻抗如何变化,电网电压前馈控 制下的 VSG 并网交互系统均能够稳定运行。

4 实验验证及分析

为了验证前文理论分析的正确性,分别设计相 应的仿真模型和实验平台,开展验证分析。

图 11 带前馈控制下的 VSG 与电网阻抗特性曲线 Fig.11 Sequence impedance curves of VSG with feedforward control and grid

4.1 VSG 输出阻抗模型验证

首先,为了验证理论阻抗模型的准确性,利用 Matlab 搭建带前馈控制的 VSG 仿真模型。在公共 连接点注入不同频率的电压扰动信号,测量对应频 率下的电流响应信号,求解该频率下的实测阻抗。 VSG 正、负序阻抗伯德图和仿真扫描结果如图 12 所示。

Fig.12 Sequence impedance measurement of VSG with feedforward control

由图 12 可以看出,理论阻抗曲线与测量结果非 常吻合,验证了所建立模型的准确性。

4.2 VSG 并网稳定性实验验证

基于实时仿真实验平台(real-time laboratory, RT-LAB)建立 VSG 并网的硬件在环实验平台。图 13 为 RT-LAB 平台系统结构。外部数字信号处理 器(digital signal processor,DSP)控制器实现 VSG 的 控制电路,RT-LAB 平台仿真模拟 VSG 接入不同电 网的系统主功率电路,并通过平台自带的数/模转 换接口实现输出采样和输入控制。

图 13 RT-LAB 平台系统结构

Fig.13 System structure of RT-LAB platform

为验证电网电压前馈控制对背景谐波的抑制 效果,在电网中人为注入5次、7次以及11次谐波 来模拟电网电压的背景谐波。图14给出加入电网 电压前馈控制前后的并网电流对比波形。

Fig.14 Experimental waveforms when grid has harmonics

由图 14 可以看出,采用电网电压前馈控制后, VSG 的输出电流波形比无前馈控制时谐波含量显 著减少。实验结果说明了电网电压前馈控制可以 消除电网电压背景谐波对并网电流的影响,改善波 形质量。同时,也验证了前文前馈控制环节设计与 分析的正确性。

为验证电网电压前馈控制对并网稳定性的影响,取电网阻抗 L_g 为3mH,且含少量背景谐波。图 15、图 16 给出加入电网电压前馈控制前后的并网电 流波形及快速傅里叶变换(fast Fourier transformation,FFT)分析对比,M为其他频率电流与 50 Hz 频 率电流的比值。

由图 15、图 16 可以看出,无前馈控制时,受电 网背景谐波的扰动,VSG 的并网电流出现明显的振 荡。FFT 分析结果显示,并网电流在 1 028 Hz 频率 处出现了大量的谐波,该频率与图 10 中的理论分析 完全吻合。而采用前馈控制后,VSG 并网电流波形 及 FFT 分析显示并网电流谐波含量极小,验证了图 11 中理论分析的正确性。

5 结论

VSG 作为一种友好型的并网装置,不仅可以模 拟传统 SG 的动静态特性,为电网提供惯量阻尼和 有功无功支撑,还可以改善并网条件下的稳定性。 文中针对非理想电网场合,在 VSG 中引入基于电流 环的电网电压前馈控制,对有、无电网电压前馈控 制的 VSG 阻抗特性及并网稳定性开展深入研究并 进行实验验证,得到如下结论:

(1)电网电压前馈控制的引入可以消除电网电 压背景谐波对并网电流的影响,显著改善非理想电 网条件下 VSG 的并网电流波形质量;

(2)引入电网电压前馈控制相当于在 VSG 的 输出端并联虚拟阻抗,改变了 VSG 的中高频段阻抗 特性,使其不再呈容性,抑制了并网条件下的高频 谐波振荡,提高了交互系统稳定性。

参考文献:

[1] 竺庆茸,黄文杰,徐修华,等. 分布式能源对主动配电网谐波 特性影响的研究[J]. 电力工程技术,2017,36(5):93-97, 108.

ZHU Qingrong, HUANG Wenjie, XU Xiuhua, et al. The impact of distributed energy on harmonic characteristics in active distribution network [J]. Electric Power Engineering Technology, 2017, 36(5):93-97, 108.

[2] WOJSZCZYK B, ALJUBURI O, 王靖. 分布式发电的高覆盖率 对电力系统设计和运行的影响分析(英文)[J]. 电网技术, 2009,33(15):37-46.

WOJSZCZYK B, ALJUBURI O, WANG Jing. Impact of high penetration of distributed generation on system design and operations[J]. Power System Technology, 2009, 33(15):37-46.

- [3] LIU J, MIURA Y, ISE T. Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators [J]. IEEE Transactions on Power Electronics, 2016, 31(5); 3600-3611.
- [4] 孟建辉,彭嘉琳,王毅,等. 多约束下光储系统的灵活虚拟惯 性控制方法[J]. 电工技术学报,2019,34(14):3046-3058. MENG Jianhui, PENG Jialin, WANG Yi, et al. Multi-constrained flexible virtual inertial control method for photovoltaic energy storage system[J]. Transactions of China Electrotechnical Society, 2019,34(14):3046-3058.

[5] 孔祥平,冯畅,丁昊,等. 虚拟电机技术应用前景和发展方向

[J]. 电力工程技术,2017,36(5):35-44.

KONG Xiangping, FENG Chang, DING Hao, et al. Application prospective and development trends of virtual generator technology[J]. Electric Power Engineering Technology,2017,36(5): 35-44.

- [6] ZHONG Q C, WEISS G. Synchronverters: inverters that mimic synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4):1259-1267.
- [7] 吕志鹏,梁英,曾正,等.应用虚拟同步电机技术的电动汽车 快充控制方法[J].中国电机工程学报,2014,34(25):
 4287-4294.

LYU Zhipeng, LIANG Ying, ZENG Zheng, et al. Virtual synchronous motor based control scheme of fast charger for electric vehicle application [J]. Proceedings of the CSEE, 2014, 34 (25):4287-4294.

- [8] D'ARCO S,SUUL J A,FOSSO O B. A virtual synchronous machine implementation for distributed control of power converters in smart grids[J]. Electric Power Systems Research,2015,122: 180-197.
- [9] 张波,颜湘武,黄毅斌,等. 虚拟同步机多机并联稳定控制及 其惯量匹配方法[J]. 电工技术学报,2017,32(10):42-52. ZHANG Bo,YAN Xiangwu,HUANG Yibin, et al. Stability control and inertia matching method of multi-parallel virtual synchronous generators[J]. Transactions of China Electrotechnical Society,2017,32(10):42-52.
- [10] WU H, RUAN X B, YANG D S, et al. Small-signal modeling and parameters design for virtual synchronous generators [J].
 IEEE Transactions on Industrial Electronics, 2016, 63 (7): 4292-4303.
- [11]任碧莹,邱姣姣,刘欢,等. 基于虚拟同步发电机双机并联系统的参数自调节优化控制策略[J].电工技术学报,2019,34(1):128-138.
 REN Biying,QIU Jiaojiao,LIU Huan, et al. Optimization control strategy of self-adjusting parameter based on dual-parallel virtual synchronous generators[J]. Transactions of China Elec-

trotechnical Society,2019,34(1):128-138. [12] JIA Y Q,ZHAO J Q,FU X W. Direct grid current control of

- [12] JIA T Q, ZHAO J Q, FO X w. Direct gift current contor of LCL-filtered grid-connected inverter mitigating grid voltage disturbance[J]. IEEE Transactions on Power Electronics, 2014, 29(3):1532-1541.
- [13] 李坤,郑文帅,马超,等. 基于单相逆变器的比例谐振控制 设计[J]. 电气技术,2019,20(12):23-27,45.
 LI Kun,ZHENG Wenshuai, MA Chao, et al. Proportional resonant control design based on single phase inverter[J]. Electrical Engineering,2019,20(12):23-27,45.
- [14] 肖力元,张伊洁,李云涛. 三相并网逆变器无差拍双闭环控制方法[J]. 浙江电力,2019,38(4):28-33.
 XIAO Liyuan,ZHANG Yijie,LI Yuntao. Three-phase grid-connected inverter deadbeat double closed-loop control method [J]. Zhejiang Electric Power,2019,38(4):28-33.
- [15] 赵强松,陈莎莎,周晓宇,等. 用于并网逆变器谐波抑制的 重复-比例复合控制器分析与设计[J]. 电工技术学报,

2019,34(24):5189-5198.

ZHAO Qiangsong, CHEN Shasha, ZHOU Xiaoyu, et al. Analysis and design of combination controller based on repetitive control and proportional control for harmonics suppression of grid-tied inverters [J]. Transactions of China Electrotechnical Society, 2019, 34(24):5189-5198.

- [16] 孙孝峰,曾健,李宁宁,等. 并联有源滤波器网侧谐波电流 反馈控制[J]. 电工技术学报,2012,27(10):150-154,181.
 SUN Xiaofeng,ZENG Jian,LI Ningning, et al. Improvement for the closed-loop control of shunt active power filter based on feedback of supply-side current [J]. Transactions of China Electrotechnical Society,2012,27(10):150-154,181.
- [17] LI W W, RUAN X B, PAN D H, et al. Full-feedforward schemes of grid voltages for a three-phase \$ LCL-type \$ gridconnected inverter[J]. IEEE Transactions on Industrial Electronics, 2013,60(6):2237-2250.
- [18] 杨东升,阮新波,吴恒. 提高 LCL 型并网逆变器对弱电网适 应能力的虚拟阻抗方法[J]. 中国电机工程学报,2014,34 (15):2327-2335.
 YANG Dongsheng, RUAN Xinbo, WU Heng. A virtual impe-

dance method to improve the performance of LCL-type gridconnected inverters under weak grid conditions [J]. Proceedings of the CSEE, 2014, 34(15):2327-2335.

- [19] WU W H, ZHOU L M, CHEN Y D, et al. Sequence-impedance-based stability comparison between VSGs and traditional grid-connected inverters[J]. IEEE Transactions on Power Electronics, 2019, 34(1):46-52.
- [20] WU W H, CHEN Y D, ZHOU L M, et al. Sequence impedance modeling and stability comparative analysis of voltage-controlled VSGs and current-controlled VSGs[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8):6460-6472.
- [21] 陈杰,申朋朋,魏涛,等. 非理想电网条件下的同步逆变器 控制策略[J]. 电力系统自动化,2018,42(9):127-133.
 CHEN Jie, SHEN Pengpeng, WEI Tao, et al. Control scheme for synchronverters under non-ideal grid condition[J]. Automation of Electric Power Systems,2018,42(9):127-133.
- [22] 吴盼,汪可友,徐晋,等. 基于 CPU-FPGA 异构平台的虚拟 同步并网逆变器实时仿真算法设计[J]. 电力系统保护与 控制,2020,48(14):85-94.
 WU Pan, WANG Keyou, XU Jin, et al. Real-time simulation algorithm design of a virtual synchronous grid-connected inverter system based on a CPU-FPGA heterogeneous platform[J].
 Power System Protection and Control,2020,48(14):85-94.
- [23] 魏涛. 同步逆变器的阻抗建模及并网稳定性分析[D]. 南京:南京航空航天大学,2018.
 WEI Tao. Impedance modeling and grid connection stability a-nalysis of synchronverter[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2018.
- [24] 陈新,王赟程,华森杰,等.采用混合阻尼自适应调整的并 网逆变器控制方法[J].中国电机工程学报,2016,36(3): 765-774.

CHEN Xin, WANG Yuncheng, HUA Miaojie, et al. Grid-con-

nected inverters control schemes based on hybrid damping adaptive control[J]. Proceedings of the CSEE, 2016, 36(3): 765-774.

- [25] 黄亮,杨雪梅,张锐明,等. 基于 LLCL 滤波器混合阻尼策略 设计方法[J]. 电力系统保护与控制,2020,48(9):150-156.
 HUANG Liang,YANG Xuemei,ZHANG Ruiming, et al. Design method of hybrid damping strategy based on an LLCL filter
 [J]. Power System Protection and Control, 2020, 48(9): 150-156.
- [26] 阮新波,王学华,潘冬华.LCL型并网逆变器的控制技术[M].北京:科学出版社,2015.

RUAN Xinbo, WANG Xuehua, PAN Donghua. Control techni-

ques for LCL-type grid-connected inverters [M]. Beijing: Science Press, 2015.

作者简介:

杨伊茜(1997),女,硕士在读,研究方向为 新能源变换、并网逆变器和阻抗分析(E-mail: 545246106@qq.com);

陈杰(1982),男,博士,副教授,研究方向 为电力电子变换装置、系统的建模、控制与 设计;

万雨朦(1994),女,硕士,研究方向为新能 源发电技术。

The impedance modelling and stability analysis of VSG with grid voltage feedforward control

YANG Yiqian¹, CHEN Jie¹, WAN Yumeng¹, ZHANG Xinying¹, WANG Kaichun²

(1. School of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;

2. Beijing Institute of Precision Mechatronics and Controls, Beijing 100076, China)

Abstract: To solve the problems of current quality decreasing and poor grid stability of virtual synchronous generator (VSG) under the condition containing background harmonic, a power grid voltage feedforward control strategy based on current loop for VSG is proposed. In order to eliminate the influence of grid voltage background harmonics on grid connected current, the voltage feedforward control function is derived according to the input current transfer function. The impedance model of VSG with and without feedforward control are established based on the harmonic linearization method. The influence on both the impedance characteristics at different frequency range and stability of grid connection are compared and analyzed. The results show that the introduction of the feedforward control is equivalent to parallel virtual impedance at the output of VSG, so the amplitude frequency curve of output impedance in high frequency band moves up, which can improve the grid connected current quality under non ideal grid conditions. At the same time, the phase frequency characteristics of medium and high frequency band are corrected from capacitive to inductive, which can eliminate the risk of harmonic oscillation under grid connected conditions, and improve the stability of interactive system. Finally, a hardware in the loop experimental platform is built to verify the correctness of the control strategy model and related analysis.

Keywords: virtual synchronous generator (VSG); background harmonics; grid voltage feedforward control; harmonic linearization; impedance modeling; stability of the grid connection

(编辑 钱悦)