DOI:10.12158/j.2096-3203.2019.06.006

基于不同建模的 HVDC 控制器参数优化方法

黄星海¹,陈威¹,傅闯²,汪娟娟¹,李欢²,魏伟² (1.华南理工大学电力学院,广东广州 510641;2.直流输电技术国家 重点实验室(南方电网科学研究院有限责任公司),广东广州 510663)

摘 要:针对目前高压直流输电(HVDC)系统的比例-积分(PI)控制器参数优化方法中仅基于单一数学模型的局限性,提出了一种PI控制器参数的整定方法。通过建立高压直流输电逆变侧系统的传递函数模型,求出控制器参数的稳定边界,基于该稳定范围求取符合系统稳定裕度的区域;接着,建立了高压直流输电逆变侧系统的小干扰动态模型,验证了小干扰动态模型的正确性,求解得到符合系统渐进稳定的区域,并将2个区域进行叠加,得到既能满足系统稳定裕度要求,又能满足系统渐进稳定要求的PI控制器参数范围。在PSCAD/EMTDC 仿真平台上搭建电磁暂态模型进行仿真验证,结果表明该整定方法能兼顾系统的稳定裕度和渐进稳定性。 关键词:HVDC 控制器;PI 控制器参数;传递函数模型;小干扰动态模型;稳定性分析

中图分类号:TM712 文献标志码:A 文章编号:2096-3203(2019)06-0037-10

0 引言

高压直流输电(high voltage direct current, HVDC)系统在现代电力系统中扮演着越来越重要 的角色^[1-3],其运行的稳定性直接关系着电网运行 的稳定性^[4-6],而 HVDC 控制系统的性能主要决定 着 HVDC 的性能。因为比例-积分(proportional plus integral,PI)控制器常被当作 HVDC 的基本控制器 而广泛地使用^[7-8],所以其参数直接决定着系统的 稳定性和动态响应特性。

在探究 PI 控制器参数优化这一问题上,现有研究是基于不同的模型且运用不同的优化方法所展 开的。文献[9]建立了 HVDC 的传递函数模型,依 据稳定裕度指标并使用穷举法选取使系统稳定的 参数范围;文献[10]在此基础上建立了 PI 控制器 参数与系统稳定裕度间的数学表达式,并提出一种 PI 控制器的参数可视化整定方法,可以直观又精确 地理解不同控制器参数与系统稳定性的关系;文献 [11]基于 Simulink 中 HVDC 系统的仿真模型,提出 了离线和在线 2 种优化 PI 控制器参数的方法;文献 [12]根据系统准稳态公式,提出了一种新的融合遗 传算法和单纯形法的混合遗传算法;文献[13—14] 基于系统的线性化状态空间模型,分别提出了一种 基于粒子群优化算法的控制参数优化策略。

现有的研究与文献都是基于单一数学模型进行的,而 HVDC 的建模方法却多种多样,如传递函

基金项目:国家自然科学基金资助项目(51777079);中国南 方电网有限责任公司科技项目(ZBKJXM20180104) 数模型和状态方程等。其中,传递函数可以揭示系 统输入-输出的外部特性,系统稳定状态下的线性状 态方程组则揭示了系统内部的结构特性。文中结 合上述2种模型的特点和优势,首先在 PSCAD 中逐 个选取元件并搭建电磁暂态模型;其次在 Matlab 中 建立系统的传递函数模型,考虑系统的稳定边界和 系统稳定裕度的要求,求出符合要求的 PI 参数范 围;接着在 Matlab 中建立系统的状态空间模型,对 其在稳定点处线性化后得出系统的小干扰动态模 型,将小干扰动态模型和电磁暂态模型进行对比, 确保线性化的结果无误,考虑系统渐进稳定性的要 求,求出符合渐进稳定性要求的 PI 参数范围;然后 将上述2个范围进行叠加,并考虑实际工程要求,求 出即符合系统稳定裕度要求,又符合系统渐进稳定 性要求,也符合实际工程要求的 PI 参数范围;最后 在 PSCAD 中对最终范围进行仿真验证。

1 研究对象及方法

文中研究的系统为电网换相换流器高压直流 输电(line commutated converter high voltage direct current,LCC-HVDC)逆变侧系统,其控制方式为定 关断角控制,换流器为 12 脉波换流器,图 1 为所研 究系统的结构及其等效电路图^[15-16]。其中 I_{dc} 为直 流电流; v_{dc} 为换流器的输出直流电压; i_{c} 为换流变压 器网侧等效电流; L_{T} 为换流变压器短路阻抗在阀侧 的等效电感; X_{T} 为对应的每相电抗值; v_{PCC} 为交流母 线的线电压有效值,交流母线即公共连接点(point of common coupling,PCC),其电压的瞬时相位 θ 为 锁相环(phase-locked loop,PLL)的输出; R_{1} — R_{3} , L_{1} 、

收稿日期:2019-05-17;修回日期:2019-06-28

 $L_2 和 C_1 - C_4 分别为交流滤波器组内相关支路的电$ 阻,电感和电容; e 为无穷大交流系统等值电动势; E $为线电压有效值; <math>\alpha_0$ 为初相角; R_s , L_s 分别为 PCC 与 交流系统间的戴维南等效电阻和电感; i_s 为流过交 流系统的电流。交流滤波器的具体结构与 CIGRE 标准测试模型中的交流滤波器相同, 具体的参数取 值如表 1 所示。

图 1 LCC-HVDC 系统结构 Fig.1 Structure of LCC-HVDC system

系统参数

表 1

Table 1 System parameters 参数 取值 参数 取值 $I_{\rm dc}/{\rm kA}$ 2 $K_{\rm pPLL}$ 10 15 $g_{\rm ref}/(\,^{\circ}\,)$ $K_{\rm iPLL}$ 50 R_1/Ω E∕kV 215.5 37.03 0 R_2/Ω $\alpha_0/(\circ)$ 116.38 $\omega_0/(\mathrm{rad}\cdot\mathrm{s}^{-1})$ 100π R_3/Ω 13.23 $R_{\rm S}/W$ 5.498 $C_1/\mu F$ 7 522 $L_{\rm S}/{\rm H}$ 0.065 1 $C_2/\mu F$ 15.04 k230/209.228 8 $C_3/\mu F$ 15.04 $K_{\rm pPI}$ 0.751 $C_4/\mu F$ 167.2 1/0.054 4 L_1/H 0.006 1 K_{iPI} $T_{\rm m}/{\rm s}$ 0.02 L_2/H 0.060 6

图 2 为 HVDC 逆变侧定关断角控制系统的控 制框图^[17-19]。其中, $G_0(s)$ 为 PI 控制器环节; $G_1(s)$ 为换流器环节; $G_2(s)$ 为测量环节; γ_{ref} , γ , γ_m 分别为 逆变侧关断角的整定值、实际值和测量值; β 为超前 触发角,限制在[30°,90°]区间内; K_{pPI} , K_{iPI} 分别为 PI 控制器的比例系数和积分系数; K_1 , T_1 分别为换 流器环节的比例系数和时间常数; K_2 , T_m 分别为测 量环节的比例系数和时间常数;w₀为系统角频率额 定值;k 为换流变压器高/低压侧线电压比值;K_{pPLL}, K_{iPLL}分别为 PLL 的比例系数和积分系数。

图 2 控制系统 Fig.2 Control system

2 基于系统传递函数模型的 PI 参数稳定域

2.1 系统的传递函数

2.1.1 控制器的传递函数

当逆变站采用定关断角控制方式时,控制器的 控制原理如图 3 所示,得到 PI 控制器的传递函数如 式(1)所示。

$$\begin{array}{c} \gamma_{\mathrm{ref}} + & & \\ & & \\ \gamma_{\mathrm{m}} & & \\ &$$

图 3 PI 控制器原理 Fig.3 Principle of PI controller

$$G_0(s) = K_{\rm pPI} + \frac{K_{\rm iPI}}{s} \tag{1}$$

2.1.2 换流器的传递函数

将换流器表示成一阶惯性环节形式,由准稳态 公式(2),可得出其传递函数如式(3)所示:

$$\beta = \arccos\left(\cos\gamma - \frac{\sqrt{2}kX_{\rm T}I_{\rm dc}}{v_{\rm PCC}}\right)$$
(2)

$$G_1(s) = \frac{K_1}{1 + sT_1}$$
(3)

式中: v_{PCC} 为 PCC 点线电压值; $K_1 = \Delta \gamma / \Delta \beta \approx \sin \beta_0 / \sin \gamma_0$; β_0 , γ_0 分别为系统稳定时的超前触发角和关断角; $T_1 = 0.02/12 = 1.667 \times 10^{-3} s_0$

2.1.3 测量环节的传递函数

测量环节同样可表示成一阶惯性环节,其传递 函数为:

$$G_2(s) = \frac{K_2}{1 + sT_{\rm m}} \tag{4}$$

式中: $K_2 = 1_{\circ}$

2.1.4 系统的传递函数

由图 2 可知,系统的开环传递函数和闭环传递 函数分别如式(5)和式(6)所示。

$$G(s) = G_0(s) G_1(s) G_2(s) = \left(K_{\rm pPI} + \frac{K_{\rm iPI}}{s}\right) \frac{K_1 K_2}{(1 + sT_1)(1 + sT_{\rm m})}$$
(5)

$$\Phi(s) = \frac{G(s)}{1 + G(s)} = \frac{(sK_{\rm pPI} + K_{\rm iPI})K_1K_2}{(sK_{\rm pPI} + K_{\rm iPI})K_1K_2 + s(1 + sT_1)(1 + sT_{\rm m})}$$
(6)

2.2 基于传递函数的频域性能优化参数稳定域

2.2.1 稳定边界

对于系统的传递函数模型而言,系统稳定的充 要条件是所有闭环极点均位于 *s* 左半平面,则可以 通过式(6)求出使系统处于稳定边界的 *K*_{pPI}和 *K*_{iPI} 的表达式,将表达式在(*K*_{pPI},*K*_{iPI})平面内表示出来 就能得到使系统稳定的 PI 控制器参数范围。之后 再根据系统的稳定裕度要求,用相同的方法求出满 足系统稳定裕度(包括幅值裕度和相角裕度)条件 的 PI 控制器参数范围。将 3 个范围相互叠加,就能 得到既满足系统稳定要求,又满足系统稳定裕度要 求的频域性能优化参数稳定域。

令
$$s = j\omega(\omega$$
 为系统角频率),代人式(6)后,得:
 $\Phi(j\omega) =$
 $(j\omega K_{pP1} + K_{iP1})K_1K_2$
 $(j\omega K_{pP1} + K_{iP1})K_1K_2 + j\omega(1 + j\omega T_1)(1 + j\omega T_m)$
(7)

则应有系统的闭环特征方程^[18]为:

$$(j\omega K_{pPI} + K_{iPI})K_1K_2 +$$

 $j\omega(1 + j\omega T_1)(1 + j\omega T_m) =$
 $(K_{iPI}K_1K_2 - \omega^2 T_1 - \omega^2 T_m) +$
 $j\omega(1 + K_{pPI}K_1K_2 - \omega^2 T_1 T_m) = 0$ (8)
令式(8)实部和虚部均为零,解得:

$$\begin{cases} K_{\rm pPI} = \frac{\omega^2 T_1 T_{\rm m} - 1}{K_1 K_2} \\ K_{\rm iPI} = \frac{\omega^2 (T_1 + T_{\rm m})}{K_1 K_2} \end{cases}$$
(9)

在(*K*_{pP1},*K*_{iP1})平面内,能使系统稳定运行的 PI 控制器参数调节范围为图 4 中的阴影区域。

2.2.2 频域性能优化的参数稳定域

HVDC 定关断角控制系统可根据文献[9]设定 稳定裕度要求为:

$$A_{\rm m} \ge 6 \, \mathrm{dB}$$

$$35^\circ \le \Phi_{\rm m} \le 60^\circ$$
(10)

式中:*A*_m为系统的幅值裕度;*F*_m为系统的相角裕度。 根据其定义,有如下表达式:

$$\begin{cases} \left(K_{\rm pP1} + \frac{K_{\rm iP1}}{j\omega_{\rm x}}\right) \frac{K_{\rm 1}K_{\rm 2}}{(1 + j\omega_{\rm x}T_{\rm 1})(1 + j\omega_{\rm x}T_{\rm m})} = -\frac{1}{A_{\rm m}} \\ \left(K_{\rm pP1} + \frac{K_{\rm iP1}}{j\omega_{\rm c}}\right) \frac{K_{\rm 1}K_{\rm 2}}{(1 + j\omega_{\rm c}T_{\rm 1})(1 + j\omega_{\rm c}T_{\rm m})} = -e^{j\phi_{\rm m}} \end{cases}$$
(11)

式中: ω_x , ω_c 分别为开环控制系统前向通道传递函数的相角穿越频率和幅值穿越频率。令 $\omega_x = \omega, \omega_c = \omega$,再对实部和虚部进行整理,可分别求得满足幅值裕度和相角裕度要求的 K_{pPl} 及 K_{ipl} 的表达式:

$$\begin{cases} K_{\rm pP1} = \frac{\omega^2 T_1 T_{\rm m} - 1}{A_{\rm m} K_1 K_2} \\ K_{\rm iP1} = \frac{\omega^2 (T_1 + T_{\rm m})}{A_{\rm m} K_1 K_2} \end{cases}$$
(12)
$$\begin{aligned} K_{\rm pP1} = \frac{\omega^2 T_1 T_{\rm m} - 1}{K_1 K_2} \cos \Phi_{\rm m} + \frac{\omega (T_1 + T_{\rm m})}{K_1 K_2} \sin \Phi_{\rm m} \\ K_{\rm iP1} = \frac{\omega^2 (T_1 + T_{\rm m})}{K_1 K_2} \cos \Phi_{\rm m} + \frac{\omega (1 - \omega^2 T_1 T_{\rm m})}{K_1 K_2} \sin \Phi_{\rm m} \end{cases}$$

(13)

将稳定裕度范围代入式(12)和式(13),得到 (*K*_{pPI},*K*_{iPI})平面内满足系统幅值裕度条件和相角裕 度条件的 PI 控制器参数范围如图 5 所示。

将图4和图5中3个区域叠加后,频域性能优 化参数稳定域即为图6中的红色区域。

3 基于系统小干扰动态模型的 PI 参数稳 定域

3.1 系统状态空间模型

3.1.1 换流器的建模

根据开关函数和脉冲调制的原理,当只考虑基频电流时,换流器交、直流侧的电流可表示为^[20-22]:

$$\begin{cases} i_{\rm Ca} = 2I_{\rm dc}S_{\rm ia}/k \\ i_{\rm Cb} = 2I_{\rm dc}S_{\rm ib}/k \\ i_{\rm Cc} = 2I_{\rm dc}S_{\rm ic}/k \end{cases}$$
(14)

式中:*i*_{Ca},*i*_{Cb},*i*_{Cc}为流经换流变压器网侧的等效三相 电流;*S*_{ia},*S*_{ib},*S*_{ic}为直流电流与等效交流三相电流之 间的开关函数,表达式为:

$$\begin{cases} S_{ia} = A_i \cos(\omega t + \varphi) \\ S_{ib} = A_i \cos(\omega t + \varphi - 2\pi/3) \\ S_{ic} = A_i \cos(\omega t + \varphi + 2\pi/3) \end{cases}$$
(15)
$$\begin{cases} A_i = \frac{2\sqrt{3}}{\pi} \frac{\sin[(\beta - \gamma)/2]}{(\beta - \gamma)/2} \\ \varphi = \arccos \frac{\cos\gamma + \cos\beta}{2} \end{cases}$$
(16)

式中: A_i 为换流器换相过程的电流修正系数; φ 为换 流器功率因数角。经过恒功率 Park 变换后,换流变 压器网侧等效电流 i_c 的 d_q 轴电流分量为:

$$\begin{cases} i_{Cd} = \sqrt{6} I_{dc} A_i \cos \varphi / k \\ i_{Ca} = \sqrt{6} I_{dc} A_i \sin \varphi / k \end{cases}$$
(17)

3.1.2 交流系统与滤波器的建模

由 PCC 的 KCL 方程和连接该点各支路的 KVL 方程,经过恒功率 Park 变换后可得交流系统的状态 方程为:

$$\boldsymbol{M}_{1} \frac{\mathrm{d}\boldsymbol{X}_{1}}{\mathrm{d}t} = \boldsymbol{A}_{1}\boldsymbol{X}_{1} + \boldsymbol{U}_{1}$$
(18)

式中:矩阵 M_1 为各微分量的系数矩阵;矩阵 $X_1 = [v_{PCCd}, v_{PCCq}, v_{C2d}, v_{C2q}, v_{C3d}, v_{C3q}, v_{C4d}, v_{C4q}, i_{L1d}, i_{L1q}, i_{L2d}, i_{L2q}, i_{sd}, i_{sq}]^T$ 为交流系统中的各状态变量; A_1 为状态 方程中可直接对各状态变量求导的项组成的矩阵; 矩阵 U_1 为交流系统的输入。交流系统模型的详细 表达式和其中各矩阵的表达式详见附录 A1。

3.1.3 控制器的建模

由图 3 易知,控制器的状态空间方程为:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = \gamma_{\mathrm{ref}} - \gamma_{\mathrm{m}} \\ \beta = K_{\mathrm{pPI}} \frac{\mathrm{d}x}{\mathrm{d}t} + K_{\mathrm{iPI}}x \\ T_{\mathrm{m}} \frac{\mathrm{d}\gamma_{\mathrm{m}}}{\mathrm{d}t} = \gamma - \gamma_{\mathrm{m}} \end{cases}$$
(19)

式中:x 为一个中间状态变量,并无实际物理意义。 3.1.4 PLL 的建模

PLL 环节的控制原理可等效为图 7 所示^[23-24], 其相应的状态空间方程见式(20)。

$$\xrightarrow{v_{\text{PPC}q}^*} \xrightarrow{K_{\text{pPLL}}} \xrightarrow{\omega} \xrightarrow{\omega} 1/s \xrightarrow{\omega} \theta$$

图 7 PLL 原理

Fig.7 Principle of PLL

$$\begin{cases} \frac{\mathrm{d}\theta}{\mathrm{d}t} = \omega \\ \frac{\mathrm{d}\omega}{\mathrm{d}t} = K_{\mathrm{pPLL}} \frac{\mathrm{d}v_{\mathrm{PCC}q}^{*}}{\mathrm{d}t} + K_{\mathrm{iPLL}}v_{\mathrm{PCC}q}^{*} \\ v_{\mathrm{PCC}q}^{*} = \frac{v_{\mathrm{PCC}q}}{\sqrt{v_{\mathrm{PCC}q}^{2} + v_{\mathrm{PCC}q}^{2}}} = \frac{v_{\mathrm{PCC}q}}{v_{\mathrm{PCC}}} \end{cases}$$
(20)

式中:v_{PCCa}为 v_{PCCa}的标幺值。

3.2 系统小干扰动态模型

3.2.1 系统小干扰动态模型的建立

式(14)—式(20)即为系统的原始状态方程组, 先在 Matlab 中用微分方程求解函数 ode45 求解出系 统原始状态方程组的稳定运行点 X₀;接着系统原始 状态方程组对各状态变量求偏导数,即可得到系统 的小干扰动态模型中矩阵 A 与矩阵 B 的表达式;最 后将各系统参数和稳定运行点 X₀的数值带入矩阵 A 和矩阵 B 的表达式,即可得到系统在稳定点处线 性化的系统小干扰动态模型:

$$\frac{\mathrm{d}\Delta X}{\mathrm{d}t} = A\Delta X + B\Delta U \tag{21}$$

式中: $X = [v_{PCCd}, v_{PCCq}, v_{C2d}, v_{C2q}, v_{C3d}, v_{C3q}, v_{C4d}, v_{C4q}, i_{111d}, i_{11q}, i_{12d}, i_{12q}, i_{5d}, i_{5q}, x, g_m, q, w]^T$ 为状态变量; U为输入变量, $U = g_{ref}; A$ 为 18×18 的系数矩阵; B为 18×1 的系数矩阵。矩阵 A和矩阵 B 的具体表达式详见附录式 A2。

3.2.2 系统小干扰动态模型的验证

通过对比 Matlab 中小干扰动态模型和 PSCAD 中的电磁暂态模型的仿真结果,验证小干扰动态模型建立的正确性。

系统开始工作在额定运行状态,t=3 s 时 g_{ref} 由 15°下降阶跃至 14.25°(0.95 倍),0.5 s 后恢复至额 定运行状态。对比结果如图 8 所示,结果列举了系 统关断角测量值 g_m 和交流母线电压 v_{PCC} 。

由图 8 可知,在系统的输入 g_{ref}发生相同的阶跃 情况下, Matlab 小干扰动态模型和 PSACD 电磁暂态 模型的动态响应基本一致, 验证了文中所建立的小 干扰动态模型的正确性。

3.3 基于小干扰动态模型的参数稳定域

对于系统的状态方程而言,系统的稳定性取决于其系数矩阵 A 的特征值。由李雅普诺夫第一法:系统唯一平衡状态具有渐进稳定性的充要条件是 A 的所有特征值均具有负实部。Matlab 中,可以此为判断依据,分别在取值范围[0,20]和[0,1 200]内,均取步长为0.1,每一个点分别对应一个(K_{pPI},K_{iPI})

的组合,先求出系统的稳定运行点,再判断该稳定运行点下矩阵 A 的特征值 λ_A ,以此鉴别某一(K_{pPI} , K_{iPI})的组合是否符合系统渐进稳定性。

求矩阵 A 的特征值 λ_A 过程中,会出现 3 种情况:(1) λ_A 的实部小于 0;(2) λ_A 的实部大于或等于 0;(3) 由于无法求出稳定运行点或矩阵 A 内出现无穷大(或无穷小)量而无法求出 λ_A 。计算结果的放大图如图 9 所示,未画出的区间均属于绿色区域。其中 Re[λ_A] <0 的情况对应图 9 中的绿色区域;Re[λ_A] >0 的情况对应图 9 中的红色区域; λ_A 无解的情况对应图 9 中的蓝色区域。由图 9 可知,使 Re[λ_A] >0 的(K_{PPI}, K_{PI}) 仅为 K_{PI} = 0 这条直线上的一部分。去除图中 K_{PPI} = 0 和 K_{PI} = 0 的 2 条直线型区域后,可用区域就仅由绿色区域和蓝色区域构成。

矩阵 A 中出现无穷大(或无穷小)量是因为在 计算矩阵 A 的某个元素过程中,(K_{pPI},K_{iPI})取某个 组合值时,该元素的计算因式的分母等于 0。这是 模型在进行数学分析及数学运算时不可避免的,但 是数学分析中的无意义不代表系统在该点取值时 不具有物理意义,具体验证如下。

首先,令系统运行在原参数条件下,t=3 s 时刻 将(K_{pP1}, K_{iP1})切换为蓝色区域内一点(0.5,0.2),得 出如图 10 所示的响应曲线 1;在切换参数的同时 g_{ref} 发生下降阶跃至 14.25°,持续 1.5 s 后恢复至原 参数运行条件,得出如图 10 所示的响应曲线 2。

由图 10 可知, (K_{pPI}, K_{iPI}) 位于图 9 蓝色区域内时,系统可以稳定运行。尽管 g_{ref} 在 t=3 s 时已经下降到 14.25°, 但在 1.5 s 的时间内 g_m 都不能运行在 14.25°附近; t=4.5 s 时 g_{ref} 恢复后, 明显看到曲线 2 在缓慢向 $g_m=15$ °这一直线靠近, 即此时系统阶跃响应调节时间非常长。由此可认为, (K_{pPI}, K_{iPI}) 位于图 9 蓝色区域内时, 虽然系统可以运行, 但是可保

守地认为基于小干扰动态化模型的 PI 参数稳定域 就仅由图 9 中的绿色区域构成。

根据文献[10]可知, PI 参数范围通常选取 $K_{p} \in [0,2], K_{i} \in [0,300]$ 。则将图 6 的红色区域和图 9 中绿色区域及未在图 9 画出的绿色区域相互叠加后,得出符合系统稳定裕度要求和系统渐进稳定性要求,并且具有实际工程意义的最终控制器参数稳定域,如图 11 中阴影区域所示。

图 11 PI 控制器的最终取值范围 Fig.11 The final parameters range of PI controller

4 仿真验证

运用在 PSCAD 中搭建的电磁暂态模型,对图 11 中 PI 控制器参数最终取值范围进行验证。分别 取(K_{pPI}, K_{iPI})等于 A(0.5, 270), B(1, 150), C(0.3, 50)时进行 3 次仿真实验。结果列举了系统稳态时 的交流母线电压基波分量 v_{PCC1} 和直流电压基波分 量 $v_{dc1}, t=3$ s 时 g_{ref} 由 15°下降阶跃至 14.25°(0.95 倍), 0.5 s 后恢复至额定运行状态时的 g 角测量值 g_m 的响应曲线。

(*K*_{pP1},*K*_{iP1})取图 11 阴影区域外的 *A* 点时,由图 12(a)和图 12(b)的蓝线可知,此时系统直流电压 很低,且由图 12(c)可知 *g*_m并不平稳,即此时系统 不能正常运行;而取图 11 范围内的 *B* 点和 *C* 点时, 系统不仅能稳定运行在额定状态,而且 *g*_{ref}出现阶跃

时,g_m并未发散,则可说明文中所用的整定方法的 有效性。

5 结语

提出了一种 HVDC 控制系统比例积分(PI)控制器参数优化方法。该方法结合了系统传递函数 模型和小干扰动态模型的特点,同时考虑了系统的 稳定裕度要求和渐进稳定性要求,并且通过可视化 的图形区域直观地展示 PI 控制器参数最适宜的稳 定域。对于2个模型的特点,可总结如下:

(1) 当*K*_{pPI}和*K*_{iPI}改变时,*b*角需限制在[30°, 90°]区间内才符合实际工程需要,但传递函数模型 并不能对*b*角进行限制,而小干扰动态模型中,*b*由 相关状态变量直接表示,因此可以对其进行限定, 更加接近实际工程模型。

(2)由系统小干扰模型求控制器参数稳定域时,可舍去没有数学意义的集合。由于数学模型是

对实际工程模型的简化,不可避免地会出现某些 (K_{pPI},K_{iPI})的取值组合具有物理意义,却不能运用 数学方法计算分析的情况。这些取值组合舍去可 使得文中求出的稳定域更加准确。

(3)充分考虑了系统的稳定裕度要求以及线性 化模型的渐进稳定性要求,求解得到的系统 PI 控制 器参数范围更加精确。

参考文献:

- 姚良忠,吴婧,王志冰,等.未来高压直流电网发展形态分析[J].中国电机工程学报,2014,34(34):6007-6020.
 YAO Liangzhong,WU Jing,WANG Zhibing, et al. Pattern analysis of future HVDC grid development[J]. Proceedings of the CSEE, 2014, 34(34):6007-6020.
- [2] ONI O E , DAVIDSON I E , MBANGULA K N I . A review of LCC-HVDC and VSC-HVDC technologies and applications[C] // Proceedings of the 16th IEEE international Conference on Environment and Electrical Engineering. IEEE, 2016.
- [3] 夏成军,刘志江,杜兆斌.基于变目标控制的 MMC-HVDC 控制策略[J].电力工程技术,2018,37(3):13-19,60.
 XIA Chengjun,LIU Zhijiang,DU Zhaobin. MMC-HVDC control strategy based on variable target control[J]. Electric Power Engineering Technology, 2018, 37(3):13-19,60.
- [4] 温家良,吴锐,彭畅,等. 直流电网在中国的应用前景分析
 [J].中国电机工程学报,2012,32(13):7-12.
 WEN Jialiang, WU Rui, PENG Chang, et al. Analysis of DC grid prospects in China [J]. Proceedings of the CSEE, 2012, 32(13):7-12.
- [5] PRABHA K. Power system stability and control[M]. China Electric Power Press, 2001.
- [6] DARYABAK M , FILIZADEH S , JATSKEVICH J , et al. Modeling of LCC-HVDCsystems using dynamic phasors [J]. IEEE Transactions on Power Delivery, 2014, 29(4):1989-1998.
- [7] 韩民晓,文俊,徐永海.高压直流输电原理与运行[M].北京:机械工业出版社,2009.
 HAN Minxiao, WEN Jun, XU Yonghai. Principle and operation of HVDC transmission [M]. Beijing: China Machine Press 2009.
- [8] 魏亮, 王渝红, 李兴源, 等. 基于 PI-D 结构的高压直流输电 定电流控制器设计[J]. 高压电器, 2016(10):114-119.
 WEI Liang, WANG Yuhong, LI Xingyuan, et al. Design of HVDC transmission constant current controller based on PI-D structure[J]. High Voltage Apparatus, 2016(10):114-119.
- [9] 杨汾艳. 直流输电系统主回路和控制器参数优化选择研究
 [D]. 杭州:浙江大学, 2007.
 YANG Fenyan. Research on parameters optimization of the main circuits and controllers in HVDC systems[D]. Hangzhou: Zhejiang University, 2007.
- [10] 伍家驹, 孙红艳, 刘斌, 等. 基于 CIGRE HVDC 控制器的 PI 参数可视化整定方法[J]. 电力自动化设备, 2012, 32 (10):115-120.

WU Jiaju, SUN Hongyan, LIU Bin, et al. Visualized tuning of

PI parameters for CIGRE HVDC controller[J]. Electric Power Automation Equipment, 2012, 32(10):115-120.

[11] 李天云,刘智铭,党震宇,等. 基于 Simulink 的 HVDC PI 控制器参数优化方法[J]. 电力自动化设备, 2012, 32(1): 45-48.

LI Tianyun, LIU Zhiming, DANG Zhenyu, et al. Parameter optimization of HVDC PI controller based on simulink [J]. Electric Power Automation Equipment, 2012, 32(1):45-48.

[12] 喻锋,王西田,杨煜,等.一种混合遗传算法在 HVDC 定
 电流控制器参数优化中的应用[J].电力系统保护与控制,2014,42(9):126-131.

YU Feng, WANG Xitian, YANG Yu, et al. An application of hybrid genetic algorithm in the parameters optimization of HVDC constant current controller[J]. Power System Protection and Control, 2014,42(9):126-131.

[13]杨佳艺,赵成勇,苑宾,等.基于粒子群优化算法的 VSC-HVDC 系统的控制参数优化策略[J].电力自动化设备,2017,37(12):178-183.
YANG Jiayi, ZHAO Chengyong, YUAN Bin, et al. Parameter optimization of VSC-HVDC control system based on particle

swarm optimization algorithm [J]. Electric Power Automation Equipment, 2017, 37(12):178-183.
[14] 邓旗,张英敏,李兴源. 基于改进 PSO 算法的 VSC-HVDC 控制器的优化设计[J]. 电测与仪表, 2017,54(21):74-80. DENG Qi, ZHANG Yingmin, LI Xingyuan. Optimal design for

- VSC-HVDC controller based on improved PSO algorithm [J]. Electrical Measurement & Instrumentation, 2017, 54 (21): 74-80.
- [15] 郭春义, 殷子寒, 王烨, 等. LCC-MMC 型混合直流输电系统小干扰稳定性研究[J/OL].中国电机工程学报:1-12 [2019-01-20]. https://doi.org/10.13334/j.0258-8013.pcsee.180390.

GUO Chunyi, YIN Zihan, WANG Ye, et al. Investigation on small-signal stability of hybrid LCC-MMC HVDC system [J/ OL]. Proceedings of the CSEE: 1-12[2019-01-20]. https:// doi.org/10.13334/j.0258-8013.pcsee.180390.

- [16] DARYABAK M , FILIZADEH S , JATSKEVICH J , et al. Modeling of LCC-HVDC systems using dynamic phasors [J]. IEEE Transactions on Power Delivery, 2014, 29 (4): 1989-1998.
- [17] 徐政. 交直流电力系统动态行为分析[M]. 北京:机械工业 出版社, 2004.
 XU Zheng. Dynamic behavior analysis of AC/DC power system
 [M]. Beijing;China Machine Press, 2004.
- [18] 胡寿松. 自动控制原理.5 版[M]. 北京:科学出版社, 2007.
 HU Shousong. Principle of automatic control. 5th edition[M].
 Beijing:Sciene Press, 2007.
- [19] 陈燕红,李世军,李延平,等. 基于内模控制的 MMC-HVDC 海上风电场不对称电网下的保护策略[J]. 电力系统保护 与控制,2018,46(22):95-103.

CHEN Yanhong, LI Shijun, LI Yanping, et al. Protection strategy for MMC-HVDC offshore wind farm under asymmetric grid based on internal model control[J]. Power System Protection and Control, 2018, 46 (22): 95-103.

[20] 于小艳,李国宁. 基于 VSC-HVDC 并网的光伏电站启动控 制及优化方法的研究[J]. 电力系统保护与控制,2018,46 (21):55-62.

YU Xiaoyan, LI Guoning. Research on start-up control and optimization method of PV power station based on VSC-HVDC grid connection [J]. Power System Protection and Control, 2018, 46 (21): 55-62.

[21] 郭春义, 宁琳如, 王虹富, 等. 基于开关函数的 LCC-HVDC 换流站动态模型及小干扰稳定性[J]. 电网技术, 2017,41 (12):134-142.

GUO Chunyi, NING Linru, WANG Hongfu, et al. Switchingfunction based dynamic model of LCC-HVDC station and small signal stability analysis[J]. Power System Technology, 2017, 41(12):134-142.

- [22] 夏成军,刘志江,杜兆斌. 基于变目标控制的 MMC-HVDC 控制策略[J]. 电力工程技术,2018,37(3):7-13,54.
 XIA Chengjun, LIU Zhijiang, DU Zhaobin. MMC-HVDC control strategy based on variable target control [J]. Electric Power Engineering Technology, 2018,37(3): 7-13,54.
- [23] 周绍元,李志勇,陈卓,等. 适用于 UPFC 多个控制策略间平 滑切换的建模[J]. 电力系统保护与控制,2018,46(16): 97-102.

ZHOU Shaoyuan, LI Zhiyong, CHEN Zhuo, et al. Modeling of smooth switching between multiple UPFC control strategies [J].Power System Protection and Control, 2018, 46 (16): 97-102.

[24] 熊凌飞,万磊,韩民晓.柔性直流输电的小信号稳定性研究及控制系统参数设计[J].华北电力大学学报(自然科学版),2015,42(3):8-14.

XIONG Lingfei, WAN Lei, HAN Minxiao. Research on smallsignal stability of VSC-HVDC and control system parameter design[J]. Journal of North China Electric Power University, 2015, 42(3):8-14.

作者简介:

黄星海(1991),男,硕士在读,研究方向为 高压直流输电、电力系统稳定与控制(E-mail: yellowstarsea@qq.com);

陈威(1995),男,硕士在读,研究方向为高 压直流输电、电力系统稳定与控制;

傅闯(1973),男,博士,教授级高级工程师,从事高压直流输电、电力系统稳定分析与 控制等相关工作。

附录 A

A1 交流系统模型和其中各矩阵的表达式

原式(18)中,矩阵 M_1 的表达式如式(A1)所示: $M_1 = \text{diag}[C_1, C_1, C_2, C_2, C_3, C_3, C_4, C_4, L_1, L_1, L_2, L_2, L_8, L_8]$ (A1) 矩阵 A₁的各元素表达式如式(A2)所示,未表示出的元素值为 0:

$\left[\left[A (1,1) - \frac{1}{2} - \frac{1}{2} \right] \right]$	$[A_1(2,1) = -\omega C_1]$
$ ^{A_1(1,1)} - \frac{1}{R_1} - \frac{1}{R_2} ^{A_1(1,1)} ^{A_1(1,1)} $	$(1, (2, 2)) = -\frac{1}{2} = \frac{1}{2}$
$A_1(1,2) = \omega C_1$	$A_1(2,2) = -\frac{1}{R_1} - \frac{1}{R_2}$
$A_1(1,3) = \frac{1}{R_1}$	$A_1(2,4) = \frac{1}{R_1}$
$A_1(1,5) = \frac{1}{R_2}$	$\begin{cases} A_1(2,5) = \frac{1}{R_2} \end{cases}$
$A_1(1,9) = -1$	$A_1(2,10) = -1$
$A_1(1,11) = -1$	$A_1(2,12) = -1$
$A_1(1,13) = -1$	$A_1(2,14) = -1$
$\left \begin{bmatrix} A_1(3,1) &= \frac{1}{R_1} \\ A_1(3,1) &= \frac{1}{R_1} \end{bmatrix} \right = \frac{1}{R_1} = \frac{1}{R$	$(1,2) = \frac{1}{R_1}$
$\left \left\{ A_1(3,3) = -\frac{1}{R_1} \right\} \right = -\frac{1}{R_1} \left\{ A_1(2) \right\} = -\frac{1}{$	$(4,3) = -\omega C_2$
$ A_1(3,4) = \omega C_2 A_1(4) $	$(4,4) = -\frac{1}{R_1}$
$ _{A_1(3,9)} = 1$ $ _{A_1(4)}$	4,10) = 1
$\left \begin{bmatrix} A_1(5,1) &= \frac{1}{R_2} \\ \end{bmatrix} \right = \frac{1}{R_2} = \begin{bmatrix} A_1(6) \\ \end{bmatrix}$	$(5,2) = \frac{1}{R_2}$
$\begin{cases} A_1(5,5) = -\frac{1}{2} & A_1(6) \end{cases}$	$(5,5) = -\omega C_3$
$\begin{bmatrix} A_{1}(5,6) & R_{2} \\ A_{1}(5,6) & = \omega C_{3} \end{bmatrix} A_{1}(6)$	$(5,6) = -\frac{1}{R_2}$
$ A_1(5,11) = 1$ $ A_1(6) $	(5,12) = 1
$\int A_1(7,8) = \omega C_4 \int A_1(8,7) = -\omega C_4$	
$\begin{cases} A_1(7,11) = 1 \end{cases} = 1 \qquad A_1(8)$,12) = 1
$A_1(9,1) = 1$ $A_1($	10,2) = 1
$\Big \Big _{A_1(9,3)} = -1 \Big _{A_1(9,3)} \Big _{A_$	10,4) = -1
$\begin{vmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$10,9) = -\omega L_1$
$(A_1(11,1) = 1)$ (A)	(12.2) = 1
$\begin{vmatrix} a & b \\ A_{4}(11,5) &= -1 \end{vmatrix} = -1$	(12.6) = -1
$\begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}_{A_{d}}^{a}(11,7) = -1 \qquad \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}_{A_{d}}^{a}$	(12,8) = -1
$A_{d}(11,11) = -R_{3}$ A_{d}	$(12, 11) = -\omega L_2$
$\begin{bmatrix} A_{d}(11,12) &= \omega L_{2} & A_{d} \end{bmatrix}$	$(12, 12) = -R_3$
$A_{4}(13,1) = 1$ A_{5}	(14.2) = 1
$\iint_{A_{4}(13,13)} = -R_{c} \int_{A_{5}}^{A_{c}} A_{5}$	$(14.13) = -\omega L_s$
$ _{A_{4}(13,14)}^{a} = \omega L_{s} _{A_{4}(13,14)}^{a} = \omega L_{s} _{A_{4}(13,14)}^{b} = \omega L$	$(14.14) = -R_s$
	(42)
	$(\Lambda \Delta)$

矩阵 U_1 的表达式如式(A3)所示:

$$\boldsymbol{U}_{1} = \begin{bmatrix} i_{\text{Cd}}, i_{\text{Cq}}, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -v_{\text{Sd}}, -v_{\text{Sq}} \end{bmatrix}^{\mathrm{T}}$$
(A3)

其中:

$$\begin{cases} v_{\rm Sd} = E\cos\left[\theta - (\omega_0 t + \alpha_0)\right] \\ v_{\rm Sg} = -E\sin\left[\theta - (\omega_0 t + \alpha_0)\right] \end{cases}$$
(A4)

A2 系统小干扰动态模型

由原始状态方程推导出小干扰动态模型的过程如式 (A5) 所示:

$$\boldsymbol{M} \frac{\mathrm{d}\Delta \boldsymbol{X}}{\mathrm{d}t} = (\boldsymbol{A}_{\mathrm{d}} + \boldsymbol{A}_{\mathrm{i}}) \Delta \boldsymbol{X} + \boldsymbol{B}_{\mathrm{i}} \Delta \boldsymbol{U}$$
(A5)

由上式可得:

$$\frac{\mathrm{d}\Delta X}{\mathrm{d}t} = \boldsymbol{M}^{-1}(\boldsymbol{A}_{\mathrm{d}} + \boldsymbol{A}_{\mathrm{i}}) \Delta X + \boldsymbol{M}^{-1} \boldsymbol{B}_{\mathrm{1}} \Delta U \qquad (A6)$$

即:

$$\begin{cases} \boldsymbol{A} = \boldsymbol{M}^{-1}(\boldsymbol{A}_{d} + \boldsymbol{A}_{i}) \\ \boldsymbol{B} = \boldsymbol{M}^{-1}\boldsymbol{B}_{1} \end{cases}$$
(A7)

其中,M为原始状态方程组的等号左边中,微分项的系数部分; A_i 为可从原状态方程组的等号右边中,对各状态变量直接求导后的结果; A_i 为原状态方程组的等号右边中,需对各状态变量间接求导后的结果; B_i 为可从原状态方程组的等号右边中,对输入量 γ_{ref} 求导的结果。各矩阵的详细表达式详见式(A8)—式(A17)。

$$\boldsymbol{M} = \operatorname{diag} \begin{bmatrix} C_{1}, C_{1}, C_{2}, C_{2}, C_{3}, C_{3}, C_{4}, C_{4}, \\ L_{1}, L_{1}, L_{2}, L_{2}, L_{5}, L_{5}, 1, T_{m}, 1, 1 \end{bmatrix}$$
(A8)
$$\boldsymbol{A}_{d} = \begin{bmatrix} \boldsymbol{A}_{1} & 0 & 0 & 0 & \boldsymbol{A}_{2} \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \boldsymbol{A}_{3} & 0 & 0 & 0 & \boldsymbol{A}_{d}(18, 18) \end{bmatrix}$$
(A9)

其中,矩阵 A_2 的表达式如下:

$$\begin{aligned} \boldsymbol{A}_{2} &= \left[C_{1} \boldsymbol{v}_{\text{PCC}q}, -C_{1} \boldsymbol{v}_{\text{PCC}d}, C_{2} \boldsymbol{v}_{C2q}, -C_{2} \boldsymbol{v}_{C2d}, \\ C_{3} \boldsymbol{v}_{C3q}, -C_{3} \boldsymbol{v}_{C3d}, C_{4} \boldsymbol{v}_{C4q}, -C_{4} \boldsymbol{v}_{C4d}, \\ L_{1} \boldsymbol{i}_{\text{L1}q}, -L_{1} \boldsymbol{i}_{\text{L1}d}, L_{2} \boldsymbol{i}_{12q}, -L_{2} \boldsymbol{i}_{12d}, L_{\text{S}} \boldsymbol{i}_{\text{S}q}, -L_{\text{S}} \boldsymbol{i}_{\text{S}d} \right]^{\text{T}} \end{aligned}$$

$$(A10)$$

$$A_{3}(1,1) = b_{1} \left[\omega C_{1} v_{PCCd}^{*} - \left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right) v_{PCCq}^{*} \right]$$

$$A_{3}(1,2) = b_{1} \left[\left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right) v_{PCCd}^{*} + \omega C_{1} v_{PCCq}^{*} \right]$$

$$A_{3}(1,2) = b_{1} \left[\frac{v_{PCCq}^{*}}{R_{1}} + \frac{1}{R_{2}} \right] v_{PCCd}^{*} + \omega C_{1} v_{PCCq}^{*} \right]$$

$$A_{3}(1,3) = b_{1} \frac{v_{PCCq}^{*}}{R_{1}}$$

$$A_{3}(1,4) = -b_{1} \frac{v_{PCCq}^{*}}{R_{2}}$$

$$A_{3}(1,5) = b_{1} \frac{v_{PCCq}^{*}}{R_{2}}$$

$$A_{3}(1,6) = -b_{1} \frac{v_{PCCq}^{*}}{R_{2}}$$

$$A_{3}(1,9) = -b_{1} v_{PCCq}^{*}$$

$$A_{3}(1,10) = b_{1} v_{PCCq}^{*}$$

$$A_{3}(1,11) = -b_{1} v_{PCCq}^{*}$$

$$A_{3}(1,12) = b_{1} v_{PCCq}^{*}$$

$$A_{3}(1,13) = -b_{1} v_{PCCq}^{*}$$

$$A_{3}(1,14) = b_{1} v_{PCCq}^{*}$$

$$A_{3}(1,14) = b_{1} v_{PCCq}^{*}$$

$$A_{3}(1,18) = b_{1} C_{1} (v_{PCCd} v_{PCCd}^{*} + v_{PCCq} v_{PCCq}^{*})$$

$$A_{d}(18,18) = b_{1}C_{1}(v_{PCCd}v_{PCCd}^{*} + v_{PCCq}v_{PCCq}^{*}) \quad (A12)$$

$$\begin{cases} A_{i}(1,1) = -a_{2}K_{1}K_{6}v_{PCCd}^{*} \\ A_{i}(1,2) = -a_{2}K_{1}K_{6}v_{PCCq}^{*} \\ A_{i}(1,15) = a_{1}K_{1}K_{iP1} \\ A_{i}(1,16) = -a_{1}K_{1}K_{iP1} \\ A_{i}(2,1) = -a_{4}K_{1}K_{6}v_{PCCq}^{*} \\ A_{i}(2,2) = -a_{4}K_{1}K_{6}v_{PCCq}^{*} \\ A_{i}(2,15) = a_{3}K_{1}K_{iP1} \\ A_{i}(2,16) = -a_{3}K_{1}K_{iP1} \\ A_{i}(2,16) = -a_{3}K_{1}K_{iP1} \\ \begin{cases} A_{i}(13,17) = V_{m}\sin(\theta - \alpha_{0}) \\ A_{i}(14,17) = V_{m}\cos(\theta - \alpha_{0}) \\ A_{i}(14,17) = V_{m}\cos(\theta - \alpha_{0}) \\ \end{cases} \\ \begin{cases} A_{i}(16,2) = \frac{K_{6}}{\sin\gamma}v_{PCCq}^{*} \\ A_{i}(16,2) = \frac{\sin\beta}{\sin\gamma}K_{iP1} \\ A_{i}(16,15) = \frac{\sin\beta}{\sin\gamma}K_{iP1} \\ A_{i}(16,16) = -\frac{\sin\beta}{\sin\gamma}K_{pP1} \\ \end{cases} \\ \begin{cases} A_{i}(18,1) = b_{1}K_{1}K_{6}(a_{4}v_{PCCd}^{*2} - a_{2}v_{PCCd}^{*}v_{PCCq}) + c_{1} \\ A_{i}(18,2) = b_{1}K_{1}K_{6}(a_{4}v_{PCCd}^{*} - a_{2}v_{PCCd}^{*}) + c_{2} \\ A_{i}(18,15) = b_{1}K_{1}K_{pP1}(a_{1}v_{PCCq}^{*} - a_{3}v_{PCCd}^{*}) \\ A_{i}(18,16) = b_{1}K_{1}K_{pP1}(a_{1}v_{PCCq}^{*} - a_{3}v_{PCCd}^{*}) \end{cases}$$

其中:

$$\begin{cases} K_1 = \frac{6\sqrt{2}}{\pi} \times \frac{I_{dc}}{k} \\ K_2 = \frac{\mu \cos \frac{\mu}{2} - 2\sin \frac{\mu}{2}}{\mu^2 \sin \gamma} \\ K_3 = 2 \frac{\sin \frac{\mu}{2}}{\mu} \\ K_4 = K_2(\sin \gamma - \sin \beta) \\ K_5 = 2K_3 \sin \beta \\ K_6 = \frac{\sqrt{2}kX_T I_{dc}}{v_{PCC}^2} \\ K_6 = \frac{\sqrt{2}kX_T I_{dc}}{v_{PCC}^2} \\ \begin{cases} a_1 = K_4 \cos \varphi - K_5 \\ a_2 = K_2 \cos \varphi + K_3 \\ a_3 = K_4 \sin \varphi + K_5 \frac{\cos \varphi}{\sin \varphi} \\ a_4 = K_2 \sin \varphi - K_3 \frac{\cos \varphi}{\sin \varphi} \end{cases}$$
(A16)

$$b_1 = -\frac{K_{\text{PPLL}} v_{\text{PCC}}^*}{v_{\text{PCC}}}$$
(A17)

$$c_{1} = \frac{K_{\text{PPLL}}}{v_{\text{PCC}}^{2}} \left[- \left(v_{\text{PCC}q}^{*3} - 2v_{\text{PCC}d}^{*2} v_{\text{PCC}q}^{*} \right) \frac{dv_{\text{PCC}d}}{dt} + \left(2v_{\text{PCC}d}^{*} v_{\text{PCC}q}^{*2} - v_{\text{PCC}d}^{*3} \right) \frac{dv_{\text{PCC}q}}{dt} \right] - \frac{K_{\text{iPLL}}}{v_{\text{PCC}}} v_{\text{PCC}q}^{*} v_{\text{PCC}q}^{*} \quad (A18)$$

system can be taken into account by this tuning method.

$$c_{2} = \frac{K_{\rm PPLL}}{v_{\rm PCC}^{2}} \left[- \left(v_{\rm PCCd}^{*3} - 2v_{\rm PCCd}^{*} v_{\rm PCCq}^{*2} \right) \frac{\mathrm{d}v_{\rm PCCd}}{\mathrm{d}t} - 3v_{\rm PCCd}^{*2} v_{\rm PCCq}^{*} \frac{\mathrm{d}v_{\rm PCCq}}{\mathrm{d}t} \right] + \frac{K_{\rm iPLL}}{v_{\rm PCC}} v_{\rm PCCd}^{*2}$$
(A19)

Parameter optimization of HVDC controller based on different modeling

HUANG Xinghai¹, CHEN Wei¹, FU Chuang², WANG Juanjuan¹, LI Huan², WEI Wei²

(1. School of Electric Power, South China University of Technology, Guangzhou 510641, China; 2. State Key Laboratory

of HVDC(Electric Power Research Institute, China Southern Power Grid Co., Ltd.), Guangzhou 510663, China) Abstract: Aiming at the current limitation which is only a single model is used in the optimization of PI controller parameters in HVDC systems, a method to tune the parameters is given. According to the transfer function model built firstly, the stability boundary locus is plotted. Then the small-signal model of system is established. After verifying the correctness of the model, the region which accords with the asymptotic stability of the system is found. Finally superpose the set satisfying the stability margin, and then the PI parameter set address both of the performance requirements is found out. The electromagnetic transient model is built and simulated in PSCAD/EMTDC. The results show that the stability margin and asymptotic stability of the

Keywords: HVDC controller; PI parameters; transfer function model; state space model; stability analysis

(编辑 钱悦)