The change rule of smoke dispersion and temperature evolution in fires within lithium iron phosphate energy storage prefabricated cabin
Author:
Clc Number:

TM912

Fund Project:

Natural Science Foundation of Hubei Province (2022CFB863), National Natural Science Foundation of China (52277144), Natural Science Foundation of Hubei Province (20221CFA025)

  • Article
  • | |
  • Metrics
  • |
  • Reference [35]
  • |
  • Related [2]
  • | | |
  • Comments
    Abstract:

    With the large-scale application of electrochemical energy storage,the safety of energy storage prefabricated cabin has become increasingly prominent. The study of the differences in energy storage prefabricated cabin fires under different thermal runaway positions in the energy storage prefabricated cabin can help to design more effective monitoring and fire extinguishing systems,and to improve the safety performance of the energy storage prefabricated cabin. Therefore,it is of great significance to simulate and study the change rule of smoke dispersion and temperature evolution in energy storage prefabricated cabin under different thermal runaway positions. Based on direct numerical simulation and vortex simulation,a numerical model of lithium iron phosphate energy storage prefabricated cabin based on the size of the actual energy storage prefabricated cabin is studied,and the t2 model which is more in line with the development of the fire situation compared with the stable fire model,and investigated the change rule of the smoke dispersion and temperature inside the prefabricated cabin by simulating the fire situation with different thermal runaway positions. The simulation results demonstrate that smoke displays distinct dynamic behaviors depending on the thermal runaway positions within the energy storage prefabricated cabin. When thermal runaway positions occur closer to the bottom,smoke exhibits swifter movement and the cabin fills up in a shorter time. Additionally,as the thermal runaway positions above 1.85 meters approach the top,accompanied by significant temperature fluctuations. Notably,there is a noticeable amplification in the temperature disparity along the horizontal axis of the energy storage prefabricated cabin. Moreover,the design scheme of the fire extinguishing system for a standard energy storage prefabricated cabin with a rated capacity of 1.2 MW·h is analyzed. This perfluorohexane fire extinguishing system,with a sprinkler intensity of 20 L/(min·m2), a sprinkler angle of 120ånd a particle size of 50 μm,can successfully controls fires and mitigates fire damage. The research results in the article can provide theoretical guidance for the distributed deployment strategy in energy storage prefabricated cabin and fire safety design of monitoring and warning devices.

    Reference
    [1] 黎博,陈民铀,钟海旺,等. 高比例可再生能源新型电力系统长期规划综述[J]. 中国电机工程学报,2023,43(2):555-580. LI Bo,CHEN Minyou,ZHONG Haiwang,et al. A review of long-term planning of new power systems with large share of renewable energy[J]. Proceedings of the CSEE,2023,43(2):555-580.
    [2] 闫群民,穆佳豪,马永翔,等. 分布式储能应用模式及优化配置综述[J]. 电力工程技术,2022,41(2):67-74. YAN Qunmin,MU Jiahao,MA Yongxiang,et al. Review of distributed energy storage application mode and optimal configuration[J]. Electric Power Engineering Technology,2022,41(2):67-74.
    [3] 马会萌,李相俊,吴荣宇,等. 兼顾新能源消纳和主动支撑电网能力提升的多类型储能容量优化配置[J]. 电力建设,2024,45(6):111-119. MA Huimeng,LI Xiangjun,WU Rongyu,et al. Optimal capacity configuration method for multi-type energy storage systems enhancing new energy consumption and actively supporting the grid[J]. Electric Power Construction,2024,45(6):111-119.
    [4] 江桂芬,徐加银,刘浩,等. 考虑风机惯量支撑及有功备用的新能源电力系统优化调度模型[J]. 浙江电力,2024,43(5):53-62. JIANG Guifen,XU Jiayin,LIU Hao,et al. An optimal scheduling model for new energy power systems considering wind turbine inertia support and active power reserve[J]. Zhejiang Electric Power,2024,43(5):53-62.
    [5] 和萍,刘鑫,宫智杰,等. 高比例可再生能源电力系统源荷储联合调峰分层优化运行[J]. 电力系统保护与控制,2024,52(18):112-122. HE Ping,LIU Xin,GONG Zhijie,et al. Hierarchical optimization operation model for joint peak-load regulation of source-load-storage in a high proportion of renewable energy power system[J]. Power System Protection and Control,2024,52(18):112-122.
    [6] 张平,康利斌,王明菊,等. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术,2022,11(6):1892-1901. ZHANG Ping,KANG Libin,WANG Mingju,et al. Technology feasibility and economic analysis of Na-ion battery energy storage[J]. Energy Storage Science and Technology,2022,11(6):1892-1901.
    [7] 杜生鑫,金阳. 锂离子电池储能预制舱风冷散热数值模拟与优化[J]. 电力工程技术,2022,41(6):58-64. DU Shengxin,JIN Yang. Numerical simulation and optimization of air cooling heat dissipation of lithium-ion battery storage cabin[J]. Electric Power Engineering Technology,2022,41(6):58-64.
    [8] 张志一,窦震海,于润泽,等. 考虑电-热等效虚拟储能的综合能源系统低碳经济调度[J]. 电力建设,2024,45(3):16-26. ZHANG Zhiyi,DOU Zhenhai,YU Runze,et al. Low-carbon economic dispatch of integrated energy system considering electric-thermal equivalent virtual energy storage[J]. Electric Power Construction,2024,45(3):16-26.
    [9] 郑圣,谭书平,张清周,等. 基于负荷场景多层聚类的储能精细化规划研究[J]. 浙江电力,2024,43(2):79-87. ZHENG Sheng,TAN Shuping,ZHANG Qingzhou,et al. Research on refined energy storage planning based on multi-layer clustering of load scenarios[J]. Zhejiang Electric Power,2024,43(2):79-87.
    [10] 刘蓉晖,王乐凯,孙改平,等. 考虑不确定性的风-光-储合作联盟参与含需求响应的主辅联合市场的竞价交易模型[J]. 电力系统保护与控制,2023,51(11):96-107. LIU Ronghui,WANG Lekai,SUN Gaiping,et al. Bidding transaction model of wind-solar-storage cooperative alliance participating in the main and auxiliary joint market with demand response considering uncertainty[J]. Power System Protection and Control,2023,51(11):96-107.
    [11] 贾超,赵霞,张妍. 锂电池储能电站火灾风险分析与对策探讨[J]. 电力安全技术,2022,24(6):23-26. JIA Chao,ZHAO Xia,ZHANG Yan. On the fire risk analysis and strategies for lithium battery energy storage power stations[J]. Electric Safety Technology,2022,24(6):23-26.
    [12] 王怀铷. 磷酸铁锂储能电池过充热失控特性研究[D]. 郑州:郑州大学,2021. WANG Huairu. Research on overcharging thermal runaway characteristic of lithium iron phosphate energy storage battery[D]. Zhengzhou:Zhengzhou University,2021.
    [13] 王铭民,孙磊,郭鹏宇,等. 基于气体在线监测的磷酸铁锂储能电池模组过充热失控特性[J]. 高电压技术,2021,47(1):279-286. WANG Mingmin,SUN Lei,GUO Pengyu,et al. Overcharge and thermal runaway characteristics of lithium iron phosphate energy storage battery modules based on gas online monitoring[J]. High Voltage Engineering,2021,47(1):279-286.
    [14] 牛志远,王怀铷,金阳,等. 不同倍率下磷酸铁锂电池模组过充热失控特性研究[J]. 电力工程技术,2021,40(4):167-174. NIU Zhiyuan,WANG Huairu,JIN Yang,et al. Overcharging and runaway characteristics of lithium iron phosphate battery modules at different rates[J]. Electric Power Engineering Technology,2021,40(4):167-174.
    [15] 张明轩,冯旭宁,欧阳明高,等. 三元锂离子动力电池针刺热失控实验与建模[J]. 汽车工程,2015,37(7):743-750,756. ZHANG Mingxuan,FENG Xuning,OUYANG Minggao,et al. Experiments and modeling of nail penetration thermal runaway in a NCM li-ion power battery[J]. Automotive Engineering,2015,37(7):743-750,756.
    [16] JHU C Y,WANG Y W,SHU C M,et al. Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter[J]. Journal of Hazardous Materials,2011,192(1):99-107.
    [17] CUMMING S. Off-gas monitoring for lithium ion battery health and safety[R]. Wright Patterson AFB: Power Sources Committee Meeting,2017.
    [18] 徐成善,鲁博瑞,张梦启,等. 储能锂离子电池预制舱热失控烟气流动研究[J]. 储能科学与技术,2022,11(8):2418-2431. XU Chengshan,LU Borui,ZHANG Mengqi,et al. Study on thermal runaway gas evolution in the lithium-ion battery energy storage cabin[J]. Energy Storage Science and Technology,2022,11(8):2418-2431.
    [19] 王怀铷,孙宜听,金阳. 磷酸铁锂储能电池簇过充热失控蔓延特性仿真研究[J]. 机械工程学报,2021,57(14):32-39. WANG Huairu,SUN Yiting,JIN Yang. Simulation study on overcharge thermal runaway propagation of lithium-iron-phosphate energy storage battery clusters[J]. Journal of Mechanical Engineering,2021,57(14):32-39.
    [20] 叶祥虎,杜建华,谭必蓉,等. 储能电站磷酸铁锂电池模组灭火参数的仿真优化[J]. 华侨大学学报(自然科学版),2023,44(4):435-441. YE Xianghu,DU Jianhua,TAN Birong,et al. Simulation and optimization of fire extinguishing parameters for lithium phosphate battery modules in energy storage power plants[J]. Journal of Huaqiao University (Natural Science),2023,44(4):435-441.
    [21] 王俊,贾壮壮,秦鹏,等. 磷酸铁锂离子电池模组热失控气体扩散仿真[J]. 储能科学与技术,2022,11(1):185-192. WANG Jun,JIA Zhuangzhuang,QIN Peng,et al. Simulation of thermal runaway gas diffusion in LiFePO4 battery module[J]. Energy Storage Science and Technology,2022,11(1):185-192.
    [22] XIE J,LI J P,WANG J H,et al. Fire protection design of a lithium-ion battery warehouse based on numerical simulation results[J]. Journal of Loss Prevention in the Process Industries,2022,80:104885.
    [23] 朱金鹏. 城市综合管廊长距离通风与消防特性研究[D]. 北京:北京交通大学,2020. ZHU Jinpeng. Research on characteristic of long-distance ventilation and fire fighting of urban utility tunnel[D]. Beijing,China:Beijing Jiaotong University,2020.
    [24] LIU X S,HOU D,JI J,et al. Experiment and numerical simulation of cable trench fire detection[J]. Case Studies in Thermal Engineering,2021,28:101338.
    [25] 田刚领,张柳丽,牛哲荟,等. 集装箱式储能系统热管理设计[J]. 电源技术,2021,45(3):317-319. TIAN Gangling,ZHANG Liuli,NIU Zhehui,et al. Design of thermal management for container-type energy storage system[J]. Power Supply Technologies and Applications,2021,45(3): 317-319.
    [26] 尹康涌,陶风波,梁伟,等. 双层结构预制舱式磷酸铁锂储能电站热失控气体爆炸模拟[J]. 储能科学与技术,2022,11(8):2488-2496. YIN Kangyong,TAO Fengbo,LIANG Wei,et al. Simulation of thermal runaway gas explosion in double-layer prefabricated cabin lithium iron phosphate energy storage power station[J]. Energy Storage Science and Technology,2022,11(8):2488-2496.
    [27] 石爽,吕娜伟,马敬轩,等. 不同类型气体探测对磷酸铁锂电池储能预制舱过充安全预警有效性对比[J]. 储能科学与技术,2022,11(8):2452-2462. SHI Shuang,LU Nawei,MA Jingxuan,et al. Comparative study on the effectiveness of different types of gas detection on the overcharge safety early warning of a lithium iron phosphate battery energy storage compartment[J]. Energy Storage Science and Technology,2022,11(8): 2452-2462.
    [28] 刘得星. 车载电池包集成灭火系统关键参数仿真研究[D]. 广州:华南理工大学,2019. LIU Dexing. Simulation research on key parameters of integrated battery fire extinguishing system[D]. Guangzhou:South China University of Technology,2019.
    [29] 陈立清. 某综合管廊火灾烟气数值模拟研究[D]. 合肥:安徽建筑大学,2018. CHEN Liqing. Simulation study of the fire smoke value on a underground pipe gallery[D]. Hefei:Anhui Jianzhu University,2018.
    [30] AN W G,TANG Y H,LIANG K,et al. Study on temperature distribution and CO diffusion induced by cable fire in L-shaped utility tunnel[J]. Sustainable Cities and Society,2020,62: 102407.
    [31] 黎可,穆居易,金翼,等. 磷酸铁锂电池火灾危险性[J]. 储能科学与技术,2021,10(3):1177-1186. LI Ke,MU Juyi,JIN Yi,et al. Fire risk of lithium iron phosphate battery[J]. Energy Storage Science and Technology,2021,10(3):1177-1186.
    [32] 蔡晶菁. 锂离子电池储能电站火灾防控技术研究综述[J]. 消防科学与技术,2022,41(4):472-477. CAI Jingjing. Review on the fire prevention and control technology for lithium-ion battery energy storage power station[J]. Fire Science and Technology,2022,41(4):472-477.
    [33] 刘一帆,常崇烨,李舒泓,等. 全氟己酮微乳液抑制锂离子电池热失控研究[J]. 中国安全生产科学技术,2023,19(9):27-32. LIU Yifan,CHANG Chongye,LI Shuhong,et al. Research on inhibition of lithium-ion battery thermal runaway by dodecafluoro-2-methylpentan-3-one microemulsion[J]. Journal of Safety Science and Technology,2023,19(9):27-32.
    [34] 蔡兴初,朱一鸣,姜可尚,等. 全氟己酮气体灭火系统在磷酸铁锂电池储能预制舱的应用[J]. 储能科学与技术,2022,11(8):2497-2504. CAI Xingchu,ZHU Yiming,JIANG Keshang,et al. Application on perfluoro-2-methyl-3-pentanone in lithium battery premade energy storage cabin[J]. Energy Storage Science and Technology,2022,11(8):2497-2504.
    [35] 禹进,郭川钰,张伟阔,等. 磷酸铁锂电池在储能预制舱中的火灾模拟及其消防应急技术仿真研究[J]. 高电压技术,2023,49(12):5187-5195. YU Jin,GUO Chuanyu,ZHANG Weikuo,et al. Fire simulation of lithium iron phosphate battery in energy storage prefabricated cabin and its fire emergency technology simulation[J]. High Voltage Engineering,2023,49(12):5187-5195. 作者简介:
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:17
  • PDF: 454
  • HTML: 407
  • Cited by: 0
History
  • Received:September 12,2024
  • Revised:November 03,2024
  • Adopted:July 23,2024
  • Online: January 23,2025
  • Published: January 28,2025
Article QR Code