Short-term photovoltaic power prediction combination model considering seasonal characteristic and data window
Author:
Clc Number:

TM615

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • Article
  • | |
  • Metrics
  • |
  • Reference [31]
  • |
  • Related [4]
  • | | |
  • Comments
    Abstract:

    The intermittency and randomness of photovoltaic power present different characteristics due to seasonal variations,so it is important to consider seasonal characteristics to improve the accuracy of photovoltaic power prediction. Therefore,a short-term photovoltaic power prediction combination model considering seasonal characteristic and data window is proposed in the paper. Firstly,the Pearson correlation coefficient method is adopted to determine suitable meteorological factors with high contribution to photovoltaic power and reduce the input feature dimensions of the prediction model. Secondly,the prediction error of different photovoltaic power models is compared,and the two models with the lowest photovoltaic power prediction error and the lowest correlation are selected to construct the combination model,i.e.,gated recurrent unit (GRU) model and extreme gradient boosting (XGboost) model. Thirdly,the effects of different input windows in the historical meteorological data on the prediction accuracy of GRU-XGboost model are analyzed to determine the optimal data window. Finally,on this basis,GRU and XGboost predict the photovoltaic power respectively. The final prediction is obtained by weighted combination of the two predictions. Simulation results show that the proposed model has stronger adaptability and higher prediction accuracy than other models.

    Reference
    [1] ZANG H X,CHENG L L,DING T,et al. Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning[J]. International Journal of Electrical Power & Energy Systems,2020,118:105790.
    [2] 赵俊浩,吴杰康,张文杰,等. 基于布谷鸟-Elman算法的光伏发电预测[J]. 电力工程技术,2020,39(2):81-88. ZHAO Junhao,WU Jiekang,ZHANG Wenjie,et al. Photovoltaic power prediction based on Elman neural network with improved cuckoo algorithm[J]. Electric Power Engineering Technology,2020,39(2):81-88.
    [3] 董存,王铮,白捷予,等. 光伏发电功率超短期预测方法综述[J]. 高电压技术,2023,49(7):2938-2951. DONG Cun,WANG Zheng,BAI Jieyu,et al. Summary of ultra-short-term forecasting methods for photovoltaic power generation[J]. High Voltage Engineering,2023,49(7):2938-2951.
    [4] 孙新程,万玥,丁宏,等. 基于小波去噪-KPCA神经网络的光伏功率预测方法[J]. 电力工程技术,2020,39(2):110-116. SUN Xincheng,WAN Yue,DING Hong,et al. Forecasting method of photovoltaic output power based on wavelet denoising/KPCA/PSOBP[J]. Electric Power Engineering Technology,2020,39(2):110-116.
    [5] 郑国权,祝恩国,张海龙,等. 基于主从博弈的高比例光伏配电台区柔性互联规划[J]. 电力建设,2024,45(4):100-110. ZHENG Guoquan,ZHU Enguo,ZHANG Hailong,et al. Flexible interconnection planning for distribution station areas of high-ratio photovoltaic based on master-slave game[J]. Electric Power Construction,2024,45(4):100-110.
    [6] 黄泽,毕贵红,谢旭,等. 基于MBI-PBI-ResNet的超短期光伏功率预测[J]. 电力系统保护与控制,2024,52(2):165-176. HUANG Ze,BI Guihong,XIE Xu,et al. Ultra-short-term PV power prediction based on MBI-PBI-ResNet[J]. Power System Protection and Control,2024,52(2):165-176.
    [7] 宋文乐,张烨,刘航旭,等. 基于光伏组件老化特性解耦的渔光互补光伏短期出力预测方法[J]. 电力建设,2024,45(7):25-33. SONG Wenle,ZHANG Ye,LIU Hangxu,et al. Short-term output prediction method for complementary fishing and solar power decoupling the aging characteristics of photovoltaic modules[J]. Electric Power Construction,2024,45(7):25-33.
    [8] 陈文进,陈菁伟,钱建国,等. 气象特征频繁变化区域的光伏功率预测方法[J]. 浙江电力,2023,42(3):37-46. CHEN Wenjin,CHEN Jingwei,QIAN Jianguo,et al. A photovoltaic power prediction method for regions with frequent changes of meteorological characteristics[J]. Zhejiang Electric Power,2023,42(3):37-46.
    [9] 王亚军,王继东,曹曼,等. 光伏电站理论发电功率的优化计算模型与方法[J]. 电力系统保护与控制,2024,52(14):144-153. WANG Yajun,WANG Jidong,CAO Man,et al. Optimization calculation models and methods for the theoretical power of a photovoltaic power station[J]. Power System Protection and Control,2024,52(14):144-153.
    [10] MAYER M J. Benefits of physical and machine learning hybridization for photovoltaic power forecasting[J]. Renewable and Sustainable Energy Reviews,2022,168:112772.
    [11] DIMD B D,VÖLLER S,CALI U,et al. A review of machine learning-based photovoltaic output power forecasting:Nordic context[J]. IEEE Access,2022,10:26404-26425.
    [12] 朱琼锋,李家腾,乔骥,等. 人工智能技术在新能源功率预测的应用及展望[J]. 中国电机工程学报,2023,43(8):3027-3047. ZHU Qiongfeng,LI Jiateng,QIAO Ji,et al. Application and prospect of artificial intelligence technology in new energy power prediction[J]. Proceedings of the CSEE,2023,43(8):3027-3047.
    [13] 朱玥,顾洁,孟璐. 基于EMD-LSTM的光伏发电预测模型[J]. 电力工程技术,2020,39(2):51-58. ZHU Yue,GU Jie,MENG Lu. Photovoltaic power generation prediction model based on EMD-LSTM[J]. Electric Power Engineering Technology,2020,39(2):51-58.
    [14] 唐雅洁,林达,倪筹帷,等. 基于XGBoost的双层协同实时校正超短期光伏预测[J]. 电力系统自动化,2021,45(7):18-27. TANG Yajie,LIN Da,NI Chouwei,et al. Ultra-short-term photovoltaic prediction based on XGBoost and double-layer collaborative real-time correction[J]. Automation of Electric Power Systems,2021,45(7):18-27.
    [15] GRZEBYK D,ALCAÑIZ A,DONKER J C B,et al. Individual yield nowcasting for residential PV systems[J]. Solar Energy,2023,251:325-336.
    [16] ZHANG N,REN Q,LIU G C,et al. Short-term PV output power forecasting based on CEEMDAN-AE-GRU[J]. Journal of Electrical Engineering & Technology,2022,17(2):1183-1194.
    [17] 卞海红,孙健硕. 基于典型气象周的GRNN光伏发电量预测模型[J]. 电力工程技术,2021,40(5):94-99. BIAN Haihong,SUN Jianshuo. Photovoltaic power generation prediction model based on optimized TMY method-GRNN[J]. Electric Power Engineering Technology,2021,40(5):94-99.
    [18] 王开艳,杜浩东,贾嵘,等. 基于相似日聚类和QR-CNN-BiLSTM模型的光伏功率短期区间概率预测[J]. 高电压技术,2022,48(11):4372-4384. WANG Kaiyan,DU Haodong,JIA Rong,et al. Short-term interval probability prediction of photovoltaic power based on similar day clustering and QR-CNN-BiLSTM model[J]. High Voltage Engineering,2022,48(11):4372-4384.
    [19] 商立群,李洪波,侯亚东,等. 基于VMD-ISSA-KELM的短期光伏发电功率预测[J]. 电力系统保护与控制,2022,50(21):138-148. SHANG Liqun,LI Hongbo,HOU Yadong,et al. Short-term photovoltaic power generation prediction based on VMD-ISSA-KELM[J]. Power System Protection and Control,2022,50(21):138-148.
    [20] 赵耀,高少炜,李东东,等. 基于天气相似聚类与QRNN的短期光伏功率区间概率预测[J]. 电力系统自动化,2023,47(23):152-161. ZHAO Yao,GAO Shaowei,LI Dongdong,et al. Short-term interval probability prediction of photovoltaic power based on weather similarity clustering and quantile regression neural network[J]. Automation of Electric Power Systems,2023,47(23):152-161.
    [21] ZHENG L W,SU R,SUN X Y,et al. Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output[J]. Energy,2023,271:127009.
    [22] 雷柯松,吐松江·卡日,伊力哈木·亚尔买买提,等. 基于WGAN-GP和CNN-LSTM-Attention的短期光伏功率预测[J]. 电力系统保护与控制,2023,51(9):108-118. LEI Kesong,TUSONGJIANG·Kari,YILIHAMU·Yaermaimaiti,et al. Prediction of short-term photovoltaic power based on WGAN-GP and CNN-LSTM-Attention[J]. Power System Protection and Control,2023,51(9):108-118.
    [23] 张雲钦,程起泽,蒋文杰,等. 基于EMD-PCA-LSTM的光伏功率预测模型[J]. 太阳能学报,2021,42(9):62-69. ZHANG Yunqin,CHEN Qize,JIANG Wenjie,et al. Photovoltaic power prediction model based on EMD-PCA-LSTM[J]. Acta Energiae Solaris Sinica,2021,42(9):62-69.
    [24] WANG Z,WANG Y S,CAO S L,et al. A robust spatial-temporal prediction model for photovoltaic power generation based on deep learning[J]. Computers and Electrical Engineering,2023,110:108784.
    [25] 杨帆,申亚,李东东,等. 基于GA-GNNM的极地光伏发电功率预测方法[J]. 太阳能学报,2022,43(4):167-174. YANG Fan,SHEN Ya,LI Dongdong,et al. Power prediction method of polar photovoltaic generation based on GA-GNNM[J]. Acta Energiae Solaris Sinica,2022,43(4):167-174.
    [26] BENESTY J,CHEN J D,HUANG Y T,et al. Pearson correlation coefficient[M]//Springer Topics in Signal Processing. Berlin,Heidelberg:Springer Berlin Heidelberg,2009:1-4.
    [27] 王伟胜,车建峰,王勃,等. 光伏发电功率预测技术及应用[M]. 北京:中国电力出版社,2019:9-10. WANG Weisheng,CHE Jianfeng,WANG Bo,et al. Photovoltaic power prediction technology and its application[M]. Beijing:China Electric Power Press,2019:9-10.
    [28] 谭小钰,刘芳,马俊杰,等. 基于DBN与T-S时变权重组合的光伏功率超短期预测模型[J]. 太阳能学报,2021,42 (10):42-48. TAN Xiaoyu,LIU Fang,MA Junjie,et al. Ultra-short-term forecasting model of photovoltaic power based on combination of DBN and T-S time-varying weights[J]. Acta Energiae Solaris Sinica,2021,42(10):42-48.
    [29] 于涛,丁海旭,黄卫民,等. 面向复杂异质数据的集成学习研究综述[J]. 控制工程,2023,30(8):1425-1435. YU Tao,DING Haixu,HUANG Weimin,et al. Summary of integrated learning for complex heterogeneous data[J]. Control Engineering of China,2023,30(8):1425-1435.
    [30] GAO H B,QIU S,FANG J,et al. Short-term prediction of PV power based on combined modal decomposition and NARX-LSTM-LightGBM[J]. Sustainability,2023,15(10):8266.
    [31] 谭海旺,杨启亮,邢建春,等. 基于XGBoost-LSTM组合模型的光伏发电功率预测[J]. 太阳能学报,2022,43(8):75-81. TAN Haiwang,YANG Qiliang,XING Jiangchun,et al. Photovoltaic power prediction based on combined XGBoost-LSTM model[J]. Acta Energiae Solaris Sinica,2022,43(8):75-81. 作者简介:
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:36
  • PDF: 404
  • HTML: 455
  • Cited by: 0
History
  • Received:June 24,2024
  • Revised:September 05,2024
  • Adopted:May 23,2024
  • Online: January 23,2025
  • Published: January 28,2025
Article QR Code