Fault diagnosis method for OLTC based on improved semi-supervised ladder networks
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [30]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    On-load tap changers (OLTC) have complex mechanical and electrical structures,which are the key component for the on-load voltage regulation of transformers. Currently,due to the sample data which are not easy to be labeled,it is difficult to effectively train the OLTC mechanical fault diagnosis models based on vibration signals. To improve the fault diagnostic accuracy for OLTC with limited labeled data,a fault diagnosis method based on Bayesian optimization-convolutional ladder networks (BO-ConvLN) is proposed in this paper. Firstly,the ladder networks are used as a semi-supervised learning method for the feature extraction of vibration signals,which is guided by a large amount of unlabeled data,leading to the enhanced diagnostic ability of ladder networks only with a small amount of labeled data. Then,the fully-connected layers are replaced by convolutional operators in the ladder networks to better extract the features of non-stationary vibration signals. Furthermore,Bayesian optimization is used to optimize the high-dimensional hyperparameters of ladder networks,witch significantly improves the diagnostic accuracy of the model within limited time cost. The experiment results show that the diagnostic accuracy for the three types of faults,namely transmission shaft jams,poor switch lubrication,and top cover looseness,is 91.67% with a label count of only 40,which demonstrates the effectiveness of BO-ConvLN in the fault diagnosis.

    Reference
    [1] 朱英浩,沈大中. 有载分接开关电气机理[M]. 北京:中国电力出版社,2012. ZHU Yinghao,SHEN Dazhong. Electrical mechanism of on-load tap changer[M]. Beijing:China Electric Power Press,2012.
    [2] 王蕾,袁洪跃,王季琴,等. 变压器有载分接开关技术和故障诊断发展现状及展望[J]. 高压电器,2022,58(3):171-180. WANG Lei,YUAN Hongyue,WANG Jiqin,et al. Development status and prospect of transformer on-load tap-changer technology and fault diagnosis[J]. High Voltage Apparatus,2022,58(3):171-180.
    [3] 张德明. 变压器分接开关保养维修技术问答[M]. 北京:中国电力出版社,2013. ZHANG Deming. Technical questions and answers of transformer tap changer maintenance[M]. Beijing:China Electric Power Press,2013.
    [4] 马勇,王树刚,王同磊,等. 基于驱动电机电流与振动信号的有载分接开关故障诊断方法[J]. 高压电器,2022,58(5):202-210. MA Yong,WANG Shugang,WANG Tonglei,et al. Fault diagnosis method for on-load tap changer based on driven motor current and vibration signal[J]. High Voltage Apparatus,2022,58(5):202-210.
    [5] 马勇,王同磊,吴鹏,等. 换流变压器真空有载分接开关动力学模拟及工作一致性研究[J]. 高压电器,2022,58(7):199-206. MA Yong,WANG Tonglei,WU Peng,et al. Study on the dynamic simulation and woking consistency of vacuum on-load tap changer in converter transformers[J]. High Voltage Apparatus,2022,58(7):199-206.
    [6] 赵书涛,王紫薇,胡经伟,等. 基于振动信号分析的有载分接开关故障诊断研究综述[J]. 华北电力大学学报(自然科学版),2021,48(5):61-71. ZHAO Shutao,WANG Ziwei,HU Jingwei,et al. Review on fault diagnosis of on-load tap changer based on vibration signal analysis[J]. Journal of North China Electric Power University (Natural Science Edition),2021,48(5):61-71.
    [7] 周志华. 机器学习[M]. 北京:清华大学出版社,2016. ZHOU Zhihua. Machine learning[M]. Beijing:Tsinghua University Press,2016.
    [8] 张知先,陈伟根,汤思蕊,等. 基于互补集总经验模态分解和局部异常因子的有载分接开关状态特征提取及异常状态诊断[J]. 电工技术学报,2019,34(21):4508-4518. ZHANG Zhixian,CHEN Weigen,TANG Sirui,et al. State feature extraction and anomaly diagnosis of on-load tap-changer based on complementary ensemble empirical mode decomposition and local outlier factor[J]. Transactions of China Electrotechnical Society,2019,34(21):4508-4518.
    [9] 张伟政,施琳琛,汲胜昌,等. 小波奇异性检测诊断有载分接开关故障[J]. 高电压技术,2006,32(7):49-53. ZHANG Weizheng,SHI Linchen,JI Shengchang,et al. Wavelet singularity detection used for fault diagnosis of on-load tap changers[J]. High Voltage Engineering,2006,32(7):49-53.
    [10] 段若晨,王丰华,周荔丹,等. 利用窄带噪声辅助多元经验模态分解算法检测换流变压器用有载分接开关机械状态[J]. 电工技术学报,2017,32(10):182-189. DUAN Ruochen,WANG Fenghua,ZHOU Lidan,et al. Mechanical condition detection of on-load tap-changer in converter transformer based on narrowband noise assisted multivariate empirical mode decomposition algorithm[J]. Transactions of China Electrotechnical Society,2017,32(10):182-189.
    [11] 王丰华,曾全昊,郑一鸣,等. 基于Bayes估计相空间融合和CM-SVDD的有载分接开关机械故障诊断[J]. 中国电机工程学报,2020,40(1):358-368,402. WANG Fenghua,ZENG Quanhao,ZHENG Yiming,et al. A mechanical fault diagnosis of on-load tap-changers based on phase space fusion of Bayes estimation and CM-SVDD[J]. Proceedings of the CSEE,2020,40(1):358-368,402.
    [12] 赵彤,李庆民,陈平. OLTC振动信号特征提取的动力学分析方法[J]. 电工技术学报,2007,22(1):41-46. ZHAO Tong,LI Qingmin,CHEN Ping. Dynamic analysis method for feature extraction of mechanical vibration signals of on-load tap changers[J]. Transactions of China Electrotechnical Society,2007,22(1):41-46.
    [13] 曾全昊,王丰华,郑一鸣,等. 基于卷积神经网络的变压器有载分接开关故障识别[J]. 电力系统自动化,2020,44(11):144-151. ZENG Quanhao,WANG Fenghua,ZHENG Yiming,et al. Fault recognition of on-load tap-changer in power transformer based on convolutional neural network[J]. Automation of Electric Power Systems,2020,44(11):144-151.
    [14] LIANG X H,WANG Y Y,GU H R. A mechanical fault diagnosis model of on-load tap changer based on same-source heterogeneous data fusion[J]. IEEE Transactions on Instrumentation and Measurement,2022,71:1-9.
    [15] 杨祎,崔其会,丁奕齐. 面向电网设备故障报告的半监督命名实体识别方法[J]. 计算机应用,2021,41(S2):41-47. YANG Yi,CUI Qihui,DING Yiqi. Named entity recognition method for power grid equipment fault report based on semi-supervised learning[J]. Journal of Computer Applications,2021,41(S2):41-47.
    [16] 于希娟,孙宏伟. 基于图像处理和半监督学习的变电设备故障诊断[J]. 电网与清洁能源,2022,38(8):60-68. YU Xijuan,SUN Hongwei. Fault diagnosis of substation equipment based on image processing and semi-supervised learning[J]. Power System and Clean Energy,2022,38(8):60-68.
    [17] PEZESHKI M,FAN L X,BRAKEL P,et al. Deconstructing the ladder network architecture[C]//Proceedings of the 33rd International Conference on Machine Learning-Volume 48. New York,NY,USA. New York:ACM,2016:2368-2376.
    [18] IOFFE S,SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning-Volume 37. New York:ACM,2015:448-456.
    [19] RASMUS A,VALPOLA H,HONKALA M,et al. Semi-supervised learning with ladder networks.. https://arxiv.org/abs/1507.02672.
    [20] GOODFELLOW I,BENGIO Y,COURVILLE A. Deep learning[M]. Cambridge,Massachusetts:The MIT Press,2016.
    [21] 高春永,柏业超,王琼. 基于改进的半监督阶梯网络SAR图像识别[J]. 南京大学学报(自然科学),2021,57(1):160-166. GAO Chunyong,BAI Yechao,WANG Qiong. SAR image recognition based on improved semi-supervised ladder network[J]. Journal of Nanjing University (Natural Science),2021,57(1):160-166.
    [22] 崔佳旭,杨博. 贝叶斯优化方法和应用综述[J]. 软件学报,2018,29(10):3068-3090. CUI Jiaxu,YANG Bo. Survey on Bayesian optimization methodology and applications[J]. Journal of Software,2018,29(10):3068-3090.
    [23] MEI J C,ZHANG G J,QI D L,et al. Accelerated solution of the transmission maintenance schedule problem:a Bayesian optimization approach[J]. Global Energy Interconnection,2021,4(5):493-500.
    [24] 何志昆,刘光斌,赵曦晶,等. 高斯过程回归方法综述[J]. 控制与决策,2013,28(8):1121-1129,1137. HE Zhikun,LIU Guangbin,ZHAO Xijing,et al. Overview of Gaussian process regression[J]. Control and Decision,2013,28(8):1121-1129,1137.
    [25] FRAZIER P I. A tutorial on Bayesian optimization.. https://arxiv.org/abs/1807.02811.
    [26] 龚雪娇,朱瑞金,唐波. 基于贝叶斯优化XGBoost的短期峰值负荷预测[J]. 电力工程技术,2020,39(6):76-81. GONG Xuejiao,ZHU Ruijin,TANG Bo. Short-term peak load forecasting based on Bayesian optimization XGBoost[J]. Electric Power Engineering Technology,2020,39(6):76-81.
    [27] 孙琪,于永进,王玉彬,等. 采用改进鲸鱼算法的配电网综合优化[J]. 电力系统及其自动化学报,2021,33(5):22-29. SUN Qi,YU Yongjin,WANG Yubin,et al. Comprehensive optimization of distribution network using improved whale optimization algorithm[J]. Proceedings of the CSU-EPSA,2021,33(5):22-29.
    [28] LEE J,QIU H,YU G,et al. Bearing dataset.. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/.
    [29] ZHANG S,YE F,WANG B N,et al. Semi-supervised bearing fault diagnosis and classification using variational autoencoder-based deep generative models[J]. IEEE Sensors Journal,2021,21(5):6476-6486.
    [30] BERGSTRA J,BENGIO Y. Random search for hyper-parameter optimization[J]. Journal of Machine Learning Research,2012,13:281-305.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:362
  • PDF: 929
  • HTML: 1504
  • Cited by: 0
History
  • Received:September 24,2022
  • Revised:December 01,2022
  • Adopted:June 01,2022
  • Online: March 22,2023
  • Published: March 28,2023
Article QR Code