Self-learning estimation method for the severity of voltage sags caused by lightning
Author:
Clc Number:

TM73

  • Article
  • | |
  • Metrics
  • |
  • Reference [29]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Lightning is one of the main causes of voltage sags in power grid. Accurate estimation of the severity of voltage sags caused by lightning can provide a basis for developing optimal management plans and siting sensitive users. In this paper,a data-driven self-learning estimation method for the severity of voltage sags is proposed. Firstly,based on the mechanism of voltage sags caused by lightning,the parameters involved in mining are selected by the monitoring information in lightning location system and power quality monitoring system. Secondly,the influence of discretization results on the accuracy of rules is reduced,and the number of discretization intervals for different parameters is determined by using discretization evaluation indexes. Then,to solve the problem of low efficiency of mining algorithm when the grid database changes dynamically,the incremental learning-based association rule mining algorithm to continuously update the mined rules,which gives it the ability of self-learning. Finally,a weighted Euclidean distance based on the integrated assignment method is proposed to evaluate the severity of voltage sags in real scenarios. The results of the empirical analysis by monitoring data of a regional power grid and simulation data of IEEE 30-node prove that the method in this paper can accurately mine valuable rules in reality and realize the severity assessment of voltage sags of the concerned nodes.

    Reference
    [1] 孟庆伟,高涵,贾志恒,等. 基于上游正序参数比较的电压暂降源定位方法[J]. 电力系统自动化,2022,46(13):177-186. MENG Qingwei,GAO Han,JIA Zhiheng,et al. Voltage sag source location method based on upstream positive sequence parameter comparison[J]. Power System Automation,2022,46(13):177-186.
    [2] 刘书铭,王毅,张博,等. 基于多元平台监测数据的电压暂降关联规则挖掘方法[J]. 电瓷避雷器,2021(5):135-143. LIU Shuming,WANG Yi,ZHANG Bo,et al. The mining method of association rules on voltage sag based on multi-platform monitoring database[J]. Insulators and Surge Arresters,2021(5):135-143.
    [3] 栾乐,马智远,莫文雄,等. 考虑不同敏感设备耐受特性的用户侧电压暂降严重程度区间评估方法[J]. 电力系统保护与控制,2021,49(2):140-148. LUAN Le,MA Zhiyuan,MO Wenxiong,et al. Voltage sag severity interval assessment method for user side considering tolerance characteristics of equipment of differing sensitivity[J]. Power System Protection and Control,2021,49(2):140-148.
    [4] 胡文曦,肖先勇,李成鑫. 考虑多维特征刻画的电压暂降严重程度评估方法[J]. 电网技术,2021,45(1):331-338. HU Wenxi,XIAO Xianyong,LI Chengxin. Voltage sag severity assessment method considering multi-dimension characterization[J]. Power System Technology,2021,45(1):331-338.
    [5] 崔鑫. 电压暂降严重程度综合评估方法研究[D]. 北京:华北电力大学,2019. CUI Xin. Research on comprehensive evaluation method of severity of voltage sag[D]. Beijing:North China Electric Power University,2019.
    [6] 吴国诚,叶樊,梁帅伟,等. 基于电压持续曲线的多次电压暂降严重程度评估方法[J]. 电力自动化设备,2018,38(2):182-191,200. WU Guocheng,YE Fan,LIANG Shuaiwei,et al. Evaluation method of multiple voltage sag severity based on voltage duration curves[J]. Electric Power Automation Equipment,2018,38(2):182-191,200.
    [7] 肖先勇,谭亚欧,胡文曦,等. 电压暂降系统指标的监测节点数量选择与评估方法[J]. 电力自动化设备,2020,40(10):8-14. XIAO Xianyong,TAN Yaou,HU Wenxi,et al. Monitoring node number selection and assessment method of voltage sag system index[J]. Electric Power Automation Equipment,2020,40(10):8-14.
    [8] 曾辉,苏安龙,葛延峰,等. 考虑负荷特性的区域电网在线转动惯量快速估计算法[J]. 电网技术,2023,47(2):423-436. ZENG Hui,SU Anlong,GE Yanfeng,et al. A fast estimation algorithm for online rotational inertia of regional power grids considering load characteristics[J]. Grid Technology,2023,47(2):423-436.
    [9] 谢伟伦,薛峰,黄志威. 基于网络传播特性的配电网电压暂降随机预估方法[J]. 电力系统保护与控制,2020,48(8):163-171. XIE Weilun,XUE Feng,HUANG Zhiwei. Stochastic estimation method of voltage sags for a distribution network based on network propagation property[J]. Power System Protection and Control,2020,48(8):163-171.
    [10] 付锦,丁蓝,苟长松. 基于仿电磁学算法的电压暂降状态估计[J]. 电力系统保护与控制,2017,45(10):98-103. FU Jin,DING Lan,GOU Changsong. Voltage sag state estimation based on electromagnetism-like mechanism[J]. Power System Protection and Control,2017,45(10):98-103.
    [11] 田世明,卜凡鹏,齐林海,等. 电压暂降事件的频繁模式挖掘与知识推理分析[J]. 电力建设,2018,39(5):21-27. TIAN Shiming,BU Fanpeng,QI Linhai,et al. Frequent pattern mining and knowledge reasoning of voltage sag events[J]. Electric Power Construction,2018,39(5):21-27.
    [12] 沈翔,杨洪耕,段晨. 基于灰靶理论与云模型的电压暂降事件数据挖掘分析方法[J]. 电网技术,2019,43(2):722-731. SHEN Xiang,YANG Honggeng,DUAN Chen. An analytical method of data mining on voltage sag based on gray target theory and cloud model[J]. Power System Technology,2019,43(2):722-731.
    [13] 浦雨婷,杨洪耕,马晓阳. 基于数据挖掘与改进灰靶的电压暂降严重度分析与评估[J]. 电力系统自动化,2020,44(2):198-206. PU Yuting,YANG Honggeng,MA Xiaoyang. Analysis and evaluation of voltage sag severity based on data mining and improved grey target theory[J]. Automation of Electric Power Systems,2020,44(2):198-206.
    [14] 王宇,谷山强,孟刚,等. 雷电定位系统反演地闪回击电流的准确度受回击速度取值的影响[J]. 高电压技术,2021,47(5):1617-1624. WANG Yu,GU Shanqiang,MENG Gang,et al. Effect of lightning return stroke speed on accuracy of inversed return stroke peak current using lightning location system[J]. High Voltage Engineering,2021,47(5):1617-1624.
    [15] 肖先勇,胡誉蓉,王杨,等. 基于非同步电能质量监测系统的谐波状态估计[J]. 中国电机工程学报,2021,41(12):4121-4132. XIAO Xianyong,HU Yurong,WANG Yang,et al. Harmonic state estimation based on asynchronous power quality monitoring system[J]. Proceedings of the CSEE,2021,41(12):4121-4132.
    [16] HE J L,WANG X,YU Z Q,et al. Statistical analysis on lightning performance of transmission lines in several regions of China[J]. IEEE Transactions on Power Delivery,2015,30(3):1543-1551.
    [17] IEEE guide for voltage sag indices:IEEE 1564-2014[S]. Institute of Electrical and Electronics Engineer,2014.
    [18] 陈壮,姜红,郝丁成,等. 基于K-means和簇内误差平方和的塑料快递包装袋X射线荧光光谱检验[J]. 激光与光电子学进展,2022,59(11):489-495. CHEN Zhuang,JIANG Hong,HAO Dingcheng,et al. X-ray fluorescence spectroscopy inspection of plastic courier bags based on K-means and sum of squared intra-cluster errors[J]. Advances in Lasers and Optoelectronics,2022,59(11):489-495.
    [19] 雒明雪,苑迎春,陈江薇,等. 基于邻域密度的K-means初始聚类中心优选方法[J]. 重庆理工大学学报(自然科学),2021,35(10):180-186. LUO Mingxue,YUAN Yingchun,CHEN Jiangwei,et al. An optimization method for initial clustering centers of K-means based on neighborhood density[J]. Journal of Chongqing University of Technology (Natural Science),2021,35(10):180-186.
    [20] 赵书强,要金铭,李志伟. 基于改进K-means聚类和SBR算法的风电场景缩减方法研究[J]. 电网技术,2021,45(10):3947-3954. ZHAO Shuqiang,YAO Jinming,LI Zhiwei. Wind power scenario reduction based on improved K-means clustering and SBR algorithm[J]. Power System Technology,2021,45(10):3947-3954.
    [21] 孙林,刘梦含,徐久成. 基于优化初始聚类中心和轮廓系数的K-means聚类算法[J]. 模糊系统与数学,2022,36(1):47-65. SUN Lin,LIU Menghan,XU Jiucheng. K-means clustering algorithm using optimal initial clustering center and contour coefficient[J]. Fuzzy Systems and Mathematics,2022,36(1):47-65.
    [22] 尹世庄,王韬,谢方方,等. 基于互信息和轮廓系数的聚类结果评估方法[J]. 兵器装备工程学报,2020,41(8):207-213. YIN Shizhuang,WANG Tao,XIE Fangfang,et al. Protocol clustering evaluation method based on mutual information and contour coefficient[J]. Journal of Ordnance Equipment Engineering,2020,41(8):207-213.
    [23] 戴国华,戴睿,张琪瑞,等. 基于主客观赋权相结合的省级电网发展诊断分析方法与实证研究[J]. 电力系统保护与控制,2022,50(2):110-118. DAI Guohua,DAI Rui,ZHANG Qirui,et al. Empirical study and analysis of provincial power grid development diagnosis based on the combination of a subjective and objective weighting method[J]. Power System Protection and Control,2022,50(2):110-118.
    [24] 张小莲,李恒聪,胡淇,等. 多站融合选址综合评估研究[J]. 电力工程技术,2022,41(2):53-59. ZHANG Xiaolian,LI Hengcong,HU Qi,et al. Comprehensive location evaluation of multi-station integration[J]. Electric Power Engineering Technology,2022,41(2):53-59.
    [25] 彭俊程,贺英倩,周华兵,等. 基于模糊层次分析法的扶贫光伏电站类型选择[J]. 供用电,2021,38(5):70-75. PENG Juncheng,HE Yingqian,ZHOU Huabing,et al. Photovoltaic poverty alleviation power stations type selection based on fuzzy analytic hierarchy process[J]. Distribution & Utilization,2021,38(5):70-75.
    [26] 邓铭,黄际元,吴东琳,等. 基于层次分析法的"源-网-荷-储"互动方案汇聚潜力评估[J]. 供用电,2022,39(9):83-92. DENG Ming,HUANG Jiyuan,WU Donglin,et al. Assessment of the convergence potential of the "source-network-load-storage" interactive scheme based on the analytic hierarchy process[J]. Distribution & Utilization,2022,39(9):83-92.
    [27] 马纪,刘希喆. 基于序关系-熵权法的低压配网台区健康状态评估[J]. 电力系统保护与控制,2017,45(6):87-93. MA Ji,LIU Xizhe. Evaluation of health status of low-voltage distribution network based on order relation-entropy weight method[J]. Power System Protection and Control,2017,45(6):87-93.
    [28] 赵淳,雷梦飞,王剑,等. 雷电流幅值累积概率分布曲线拟合方法[J]. 高电压技术,2018,44(5):1598-1604. ZHAO Chun,LEI Mengfei,WANG Jian,et al. Curve fitting me-thod of cumulative probability distribution of lightning current magnitude[J]. High Voltage Engineering,2018,44(5):1598-1604.
    [29] WANG Y,LI S Y,XIAO X Y. Estimation method of voltage sag frequency considering transformer energization[J]. IEEE Transactions on Power Delivery,2021,36(6):3404-3413.
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 17,2022
  • Revised:December 21,2022
  • Adopted:July 08,2022
  • Online: March 22,2023
  • Published: March 28,2023
Article QR Code