Abstract:Fault location is of great significance for fault handling and power restoration of distribution network. In the fault location method for active distribution network,the calculation speed of matrix algorithm is high,but this method has a poor fault tolerance. The fault tolerance of intelligent optimization algorithm is strong,but this method has local convergence problems in large-scale distribution network,and it has a low speed. To solve the problems above,a comprehensive approach for the fault location in distribution network which combines the advantages of both methods is proposed. Firstly,the matrix algorithm is used to locate the fault section rapidly after fault occurs in active distribution network,which uses the alarm information uploaded by the feeder terminal unit (FTU). Then,in order to avoid outputting wrong positioning results caused by poor fault tolerance of matrix algorithm,the positioning results of matrix algorithm is verified by switching function. The location results that fail the verification is included in the suspicious fault set whose dimension is much lower than that of the distribution network. To output the final positioning results,the grey wolf optimization (GWO) algorithm is used to optimize the set above. Finally,the simulation tested by Matlab shows that the proposed method can achieve fault location rapidly with strong fault tolerance in active distribution network.