Droop control strategy of MMILC based on energy fluctuation in sub-module capacitor
Author:
Clc Number:

TM76

  • Article
  • | |
  • Metrics
  • |
  • Reference [22]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    In hybrid AC/DC microgrid,interlinking converter (ILC) can balance power flow between AC and DC microgrid,thus stabilizing AC frequency and DC voltage in islanding mode. As a topology of ILC,modular multilevel interlinking converter (MMILC) has advantages of good harmonic characteristics,high quality waveforms and low switching loss. A two-stage droop control strategy for MMILC is proposed. Firstly,based on the energy fluctuation characteristics of the sub-module capacitance,a new unified droop characteristic of AC and DC side for MMILC is established. Then,a mathematical relation between DC voltage and equivalent sub-module capacitor voltage is given to adjust power reference according to deviation of dc voltage. Also the dead zone and an allowable minimum operation range of the droop characteristic are set. Finally,the control performance of MMILC in different load profiles and overload conditions are simulated. The simulation results show that the proposed two-stage droop control strategy of MMILC can automatically compensate the power to both AC/DC sides in different load profiles. Under overload conditions,MMILC can instantaneous block the active power transmission,which validates the correctness and availability of the control strategy.

    Reference
    [1] EAJAL A A,ABDELWAHED M A,EL-SAADANY E F,et al. A unified approach to the power flow analysis of AC/DC hybrid microgrids[J]. IEEE Transactions on Sustainable Energy,2016,7(3):1145-1158.
    [2] NEJABATKHAH F,LI Y W. Overview ofpower management strategies of hybrid AC/DC microgrid[J]. IEEE Transactions on Power Electronics,2015,30(12):7072-7089.
    [3] DRAGICEVIC T,LU X N,VASQUEZ J C,et al. DC microgrids—part Ⅱ:a review of power architectures,applications,and standardization issues[J]. IEEE Transactions on Power Electronics,2016,31(5):3528-3549.
    [4] 丁明,史盛亮,刘新宇,等. 交直流混合微网优化配置研究[J]. 电力系统保护与控制,2018,46(14):17-25. DING Ming,SHI Shengliang,LIU Xinyu,et al. Study of optimal configuration of a hybrid AC/DC microgrid[J]. Power System Protection and Control,2018,46(14):17-25.
    [5] 杨捷,金新民,杨晓亮,等. 交直流混合微网功率控制技术研究综述[J]. 电网技术,2017,41(1):29-39. YANG Jie,JIN Xinmin,YANG Xiaoliang,et al. Overview on power control technologies in hybrid AC-DC microgrid[J]. Power System Technology,2017,41(1):29-39.
    [6] GUERRERO J M,VASQUEZ J C,MATAS J,et al. Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization[J]. IEEE Transactions on Industrial Electronics,2011,58(1):158-172.
    [7] LOH P C,LI D,CHAI Y K,et al. Autonomous operation of hybrid microgrid with AC and DC subgrids[J]. IEEE Transactions on Power Electronics,2013,28(5):2214-2223.
    [8] LOH P C,LI D,CHAI Y K,et al. Autonomous control of interlinking converter with energy storage in hybrid AC-DC microgrid[J]. IEEE Transactions on Industry Applications,2013,49(3):1374-1382.
    [9] 谢文超,朱永强,杜少飞,等. 交直流混合微电网中互联变流器功率控制[J]. 电力建设,2016,37(10):9-15. XIE Wenchao,ZHU Yongqiang,DU Shaofei,et al. Power control of interlinking converter in AC/DC hybrid microgrid[J]. Electric Power Construction,2016,37(10):9-15.
    [10] 张国荣,丁晓通,彭勃,等. 交直流混合微电网互联变流器改进控制策略[J]. 电力系统保护与控制,2020,48(14):50-58. ZHANG Guorong,DING Xiaotong,PENG Bo,et al. Improved controlstrategy for an AC/DC hybrid microgrid interlinking converter[J]. Power System Protection and Control,2020,48(14):50-58.
    [11] 刘佳易. 交直流混合微电网中双向AC/DC功率变换器控制策略研究[D]. 太原:太原理工大学,2014. LIU Jiayi. Research on the control method of interlink-converter in hybrid microgrid[D]. Taiyuan:Taiyuan University of Technology,2014.
    [12] EGHTEDARPOUR N,FARJAH E. Power control and management in a hybrid AC/DC microgrid[J]. IEEE Transactions on Smart Grid,2014,5(3):1494-1505.
    [13] 贾利虎,朱永强,杜少飞,等. 交直流微电网互联变流器控制策略[J]. 电力系统自动化,2016,40(24):98-104. JIA Lihu,ZHU Yongqiang,DU Shaofei,et al. Control strategy of interlinked converter for AC/DC microgrid[J]. Automation of Electric Power Systems,2016,40(24):98-104.
    [14] 朱永强,张泉,刘康,等. 交直流混合微电网互联变流器新型控制策略[J]. 电力建设,2019,40(11):48-54. ZHU Yongqiang,ZHANG Quan,LIU Kang,et al. A new control strategy of interlinking converter in hybrid AC/DC microgrid[J]. Electric Power Construction,2019,40(11):48-54.
    [15] PEREZ M A,BERNET S,RODRIGUEZ J,et al. Circuit topologies,modeling,control schemes,and applications of modular multilevel converters[J]. IEEE Transactions on Power Electronics,2015,30(1):4-17.
    [16] 张怀天,荆龙,吴学智,等. 用于交直流配电网的模块化多电平换流器分序补偿控制策略[J]. 电网技术,2018,42(1):254-261. ZHANG Huaitian,JING Long,WU Xuezhi,et al. Sequence decomposition and compensation control strategy of MMC for AC and DC distribution network[J]. Power System Technology,2018,42(1):254-261.
    [17] 黄春霞,李晓英. 基于MMC互连的交直流混合微电网中MSI与MMC环流分析[J]. 电子设计工程,2017,25(10):114-119. HUANG Chunxia,LI Xiaoying. Circulating Current analysis of micro source inverter and MMC of a hybrid AC/DC micro-grid connected by MMC[J]. Electronic Design Engineering,2017,25(10):114-119.
    [18] JAMSHIDIFAR A,JOVCIC D. Small-signal dynamic DQ model of modular multilevel converter for system studies[J]. IEEE Transactions on Power Delivery,2016,31(1):191-199.
    [19] 李正,郝全睿,尹晓东,等. 模块化多电平换流器的降阶小信号模型研究[J]. 中国电机工程学报,2018,38(12):3638-3650,24. LI Zheng,HAO Quanrui,YIN Xiaodong,et al. Research on reduced-order small-signal model of modular multilevel converter[J]. Proceedings of the CSEE,2018,38(12):3638-3650,24.
    [20] LUDOIS D C,VENKATARAMANAN G. Simplified terminal behavioral model for a modular multilevel converter[J]. IEEE Transactions on Power Electronics,2014,29(4):1622-1631.
    [21] DU C,AGNEHOLM E,OLSSON G. Comparison of different frequency controllers for a VSC-HVDC supplied system[J]. IEEE Transactions on Power Delivery,2008,23(4):2224-2232.
    [22] 管敏渊,徐政,屠卿瑞,等. 模块化多电平换流器型直流输电的调制策略[J]. 电力系统自动化,2010,34(2):48-52. GUAN Minyuan,XU Zheng,TU Qingrui,et al. Nearest level modulation for modular multilevel converters in HVDC transmission[J]. Automation of Electric Power Systems,2010,34(2):48-52.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:609
  • PDF: 1142
  • HTML: 1903
  • Cited by: 0
History
  • Received:August 19,2022
  • Revised:October 22,2022
  • Adopted:November 29,2021
  • Online: January 18,2023
  • Published: January 28,2023
Article QR Code