Abstract:There are some disadvantages in existing inverter-interfaced distributed generators (IIDG) low voltage ride-through control methods,such as unsatisfactory voltage support effects,single control objectives,and the risk of over-limiting the output current. In this paper,a low voltage ride-through control considering multiple control objectives is proposed. Firstly,the preset phase voltage is used as the constraint condition,and the voltage support equation is constructed to realize the voltage support control. Secondly,by restricting the magnitude of the negative sequence reactive current injected by the IIDG into the grid,the active output oscillation suppression control is realized. At the same time,to make full use of the remaining capacity of IIDG,the maximum active power output and current-limiting strategy are used to calculate the positive sequence active current reference value of the IIDG to ensure that the maximum active power output control is achieved under the premise that the output current of IIDG does not exceed the limit. The simulation results show that compared with the existing positive-sequence reactive current injection control method,the proposed low-voltage ride-through control method in this paper has a better fault control effect.