Distribution network planning based on optimal system efficiency
Author:
Clc Number:

TM726

  • Article
  • | |
  • Metrics
  • |
  • Reference [24]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Nowadays it is the primary objective to improve energy efficiency of distribution network planning. However, it is focused on economic efficiency by most traditional models of distribution network planning. Therefore, a model of distribution network planning for optimal energy efficiency in power system is proposed. On the basis of the data for coal consumption, the factors are discussed such as the power loss of distribution network and the planning of distributed enregy, and these factors reflect comprehensively the energy efficiency of distribution network system. An improved algorithm of particle swarm optimization (POS) is used for the solution process in the proposed model by adding inertia weights, and this algorithm improves the convergence speed the accuracy at the same time. A radiation network shape strategy is also carried out to correct results individually. IEEE 33-bus examples are selected for verification. The calculation results show that the model with fast convergence and high stability, effectively improves the energy efficiency level of the distribution system, and it makes sure that the results of distribution network planning are reasonable. The present method is verified for its effectiveness of distribution network planning.

    Reference
    [1] 赵芳,杜兆斌. 敏感负荷对含新能源配网规划的影响[J]. 电力工程技术,2018,37(5):56-63. ZHAO Fang,DU Zhaobin. Impact analysis of voltage sensitive load on planning of distribution network with new energy[J]. Electric Power Engineering Technology,2018,37(5):56-63.
    [2] 杨文丽. 计及可靠性评估的中压配电网规划方案比选[J]. 电力工程技术,2018,37(2):13-19,43. YANG Wenli. Comparison and selection of MV distribution network planning schemes considering reliability assessment[J]. Electric Power Engineering Technology,2018,37(2):13-19, 43.
    [3] 唐俊熙,王梓耀,张俊潇,等. 基于文化蚁群算法的高可靠多电源配电网规划模型[J]. 电力系统保护与控制,2020,48(7):99-107. TANG Junxi,WANG Ziyao,ZHANG Junxiao,et al. High reliability multi-power distribution network planning model based on memetic ant colony algorithm[J]. Power System Protection and Control,2020,48(7):99-107.
    [4] 肖振锋,辛培哲,刘志刚,等. 泛在电力物联网形势下的主动配电网规划技术综述[J]. 电力系统保护与控制,2020,48(3):43-48. XIAO Zhenfeng,XIN Peizhe,LIU Zhigang,et al. An overview of planning technology for active distribution network under the situation of ubiquitous power internet of things[J]. Power System Protection and Control,2020,48(3):43-48.
    [5] 雷超帆,赵华东,江南. 融合粒子群与蚁群算法的机器人路径规划[J]. 重庆理工大学学报(自然科学),2020,34(1):235-241. LEI Chaofan,ZHAO Huadong,JIANG Nan. Robot path planning based on particle swarm optimization and ant colony fusion algorithm[J]. Journal of Chongqing University of Technology (Natural Science),2020,34(1):235-241.
    [6] 吴志,刘亚斐,顾伟,等. 基于改进Benders分解的储能、分布式电源与配电网多阶段规划[J]. 中国电机工程学报,2019,39(16):4705-4715,4973. WU Zhi,LIU Yafei,GU Wei,et al. A modified decomposition method for multistage planning of energy storage,distributed generation and distribution network[J]. Proceedings of the CSEE,2019,39(16):4705-4715,4973.
    [7] 高红均,刘俊勇. 考虑不同类型DG和负荷建模的主动配电网协同规划[J]. 中国电机工程学报,2016,36(18):4911-4922,5115. GAO Hongjun,LIU Junyong. Coordinated planning considering different types of DG and load in active distribution network[J]. Proceedings of the CSEE,2016,36(18):4911-4922,5115.
    [8] 宋毅,薛振宇,滕林,等. 面向一体化配电网规划设计平台的数据集成技术研究及应用[J]. 电网技术,2016,40(7):2199-2207. SONG Yi,XUE Zhenyu,TENG Lin,et al. Data integration technology research and application in integrated distribution network planning platform[J]. Power System Technology,2016,40(7):2199-2207.
    [9] 黄河,高松,朱磊,等. 考虑多能互补的主动配电网规划与高效Benders求解方法[J]. 中国电力,2019,52(6):11-18. HUANG He,GAO Song,ZHU Lei,et al. Active distribution network planning model and Benders solution strategy considering multi-energy complementation[J]. Electric Power,2019,52(6):11-18.
    [10] 陈潇雅,刘志坚,刘晓欣,等. 基于长期负荷预测和联络分析的配电网规划[J]. 广东电力,2019,32(3):59-65. CHEN Xiaoya,LIU Zhijian,LIU Xiaoxin,et al. Distribution network planning based on long-term load forecasting and Tie-line analysis[J]. Guangdong Electric Power,2019,32(3):59-65.
    [11] 张晓莉,王秦飞,冀汶莉. 一种改进的自适应惯性权重的粒子群算法[J]. 微电子学与计算机,2019,36(3):66-70. ZHANG Xiaoli,WANG Qinfei,JI Wenli. An improved particle swarm optimization algorithm for adaptive inertial weights[J]. Microelectronics & Computer,2019,36(3):66-70.
    [12] 黄洋,鲁海燕,许凯波,等. 基于S型函数的自适应粒子群优化算法[J]. 计算机科学,2019,46(1):245-250. HUANG Yang,LU Haiyan,XU Kaibo,et al. S-shaped function based adaptive particle swarm optimization algorithm[J]. Computer Science,2019,46(1):245-250.
    [13] 杨楠,董邦天,黄禹,等. 考虑不确定性和多主体博弈的增量配电网源网荷协同规划方法[J]. 中国电机工程学报,2019,39(9):2689-2702. YANG Nan,DONG Bangtian,HUANG Yu,et al. Incremental distribution network source-load collaborative planning method considering uncertainty and multi-agent game[J]. Proceedings of the CSEE,2019,39(9):2689-2702.
    [14] 吕凯,唐昊,王珂,等. 计及源荷双侧不确定性的跨区互联电网源网荷协同调度[J]. 电力系统自动化,2019,43(22):38-45. LYU Kai,TANG Hao,WANG Ke,et al. Coordinated Dispatching of source-grid-load for inter-regional power grid considering uncertainties of both source and load sides[J]. Automation of Electric Power Systems,2019,43(22):38-45.
    [15] 黄伟,柳思岐,叶波. 考虑源-荷互动的园区综合能源系统站-网协同优化[J]. 电力系统自动化,2020,44(14):44-53. HUANG Wei,LIU Siqi,YE bo. Station-network cooperative optimization of integrated energy system for park considering source-load interaction[J]. Automation of Electric Power Systems,2020,44(14):44-53.
    [16] 高赐威,罗海明,朱璐璐,等. 基于电力系统能效评估的蓄能用电技术节能评价及优化[J]. 电工技术学报,2016,31(11):140-148. GAO Ciwei,LUO Haiming,ZHU Lulu,et al. The energy-saving assessment and optimization of energy storage and electricity utilization technology based on the energy efficiency evaluation of power system[J]. Transactions of China Electrotechnical Society,2016,31(11):140-148.
    [17] 崔承刚,杨晓飞. 基于内部罚函数的进化算法求解约束优化问题[J]. 软件学报,2015,26(7):1688-1699. CUI Chenggang,YANG Xiaofei. Interior penalty rule based evolutionary algorithm for constrained optimization[J]. Journal of Software,2015,26(7):1688-1699.
    [18] 邓长虹,马庆,肖永,等. 基于自学习迁移粒子群算法及高斯罚函数的无功优化方法[J]. 电网技术,2014,38(12):3341-3346. DENG Changhong,MA Qing,XIAO Yong,et al. Reactive power optimization based on self-learning migration particle swarm optimization and Gaussian penalty function[J]. Power System Technology,2014,38(12):3341-3346.
    [19] 王东风,孟丽,赵文杰. 基于自适应搜索中心的骨干粒子群算法[J]. 计算机学报,2016,39(12):2652-2667. WANG Dongfeng,MENG Li,ZHAO Wenjie. Improved bare bones particle swarm optimization with adaptive search center[J]. Chinese Journal of Computers,2016,39(12):2652-2667.
    [20] 张君则,艾欣. 基于粒子群算法的多类型分布式电源并网位置与运行出力综合优化算法[J]. 电网技术,2014,38(12):3372-3377. ZHANG Junze,AI Xin. A particle swarm optimization based comprehensive optimization algorithm for grid-connected positions and operation parameters of multi-type distribution generations[J]. Power System Technology,2014,38(12):3372-3377.
    [21] 马天祥,王春英,贾静然,等. 基于二进制粒子群算法的交直流混合配电网故障恢复方法[J]. 电力系统保护与控制,2019,47(9):112-119. MA Tianxiang,WANG Chunying,JIA Jingran,et al. Fault recovery method for AC/DC hybrid distribution network based on binary particle swarm optimization algorithm[J]. Power System Protection and Control,2019,47(9):112-119.
    [22] 张涛,史苏怡,徐雪琴. 基于二进制量子粒子群算法的含分布式电源配电网重构[J]. 电力系统保护与控制,2016,44(4):22-28. ZHANG Tao,SHI Suyi,XU Xueqin. Distribution network reconfiguration with distributed generation based on improved quantum binary particle swarm optimization[J]. Power System Protection and Control,2016,44(4):22-28.
    [23] QIAO F,MA J. Coordinated voltage/var control in a hybrid AC/DC distribution network[J]. IET Generation,Transmission & Distribution,2020,14(11):2129-2137.
    [24] 何若太,张晓燕,张航,等. 计及分布式电源的配电网电压稳定性风险辨识方法研究[J]. 可再生能源,2020,38(5):685-689. HE Ruotai,ZHANG Xiaoyan,ZHANG Hang,et al. Research on risk identification method of voltage stability of distribution network considering distributed energy[J]. Renewable Energy Resources,2020,38(5):685-689.
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 12,2020
  • Revised:October 20,2020
  • Adopted:July 19,2020
  • Online: April 02,2021
  • Published: March 28,2021
Article QR Code