Thermal runaway characteristic of lithium iron phosphate battery modules through overcharge and the fire extinguishing effect of water mist
Author:
Clc Number:

TM911

Fund Project:

National Natural Science Foundation of China (51807180)

  • Article
  • | |
  • Metrics
  • |
  • Reference [25]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Thermal runaway and fire extinguishing are both urgent problems in large-scale applications of lithium iron phosphate battery (LFP) modules. In this paper, the thermal runaway characteristic of a single LFP module and a cluster of LFP modules are studied under constant current overcharge mode. Water mist is used as a fire extinguishing agent to study its fire extinguishing effect on single and cluster LFP modules. The experimental results show that the temperatures of the modules in the cluster rise sharply after combustion, with a temperature rise rate of 42.74℃/s in the first 18 s. The peak temperature is nearly 1 000℃, which is significantly higher than that of the peak temperature of the single module (600℃). After 100 seconds of continuous spraying of water mist, the temperatures of all the modules drop rapidly, and the fires are completely extinguished without reignition, thus proving that the fire extinguishing effects by using water mist are satisfactory. Above results provide an effective theoretical and experimental support for the safety and fire extinguishing of the LFP-based energy storage power station.

    Reference
    [1] 吴霜,季聪,孙国强. 含分布式储能的配电网多目标运行优化策略研究[J]. 电力工程技术,2018,37(2):20-26. WU Shuang,JI Cong,SUN Guoqiang. Multiple objection operation strategy optimization research of distribution network including distributed energy storage[J]. Electric Power Engineering Technology,2018,37(2):20-26.
    [2] 于昌海,吴继平,杨海晶,等. 规模化储能系统参与电网调频的控制策略研究[J]. 电力工程技术,2019,38(4):68-73, 105. YU Changhai,WU Jiping,YANG Haijing,et al. Research on control strategy of large-scale energy storage system participating in power grid frequency modulation[J]. Electric Power Engineering Technology,2019,38(4):68-73,105.
    [3] 刘大贺,韩晓娟,李建林. 基于光伏电站场景下的梯次电池储能经济性分析[J]. 电力工程技术,2017,36(6):27-31,77. LIU Dahe,HAN Xiaojuan,LI Jianlin. Energy storage economy analysis of cascade cells based on photovoltaic power station scenario[J]. Electric Power Engineering Technology,2017,36(6):27-31,77.
    [4] 葛维春,滕健伊,潘超,等. 含风光储能源储荷规划与运行调控策略[J]. 电力系统保护与控制,2019,47(13):46-53. GE Weichun,TENG Jianyi,PAN Chao,et al. Operation regulation strategy of source-storage-load with wind energy storage energy[J]. Power System Protection and Control,2019,47(13):46-53.
    [5] 伍惠铖,王淳,左远龙,等. 基于分时电价和蓄电池实时控制策略的家庭能量系统优化[J]. 电力系统保护与控制,2019,47(19):23-30. WU Huicheng,WANG Chun,ZUO Yuanlong,et al. Home energy system optimization based on time-of-use price and real-time control strategy of battery[J]. Power System Protection and Control,2019,47(19):23-30.
    [6] 李建林,马会萌,惠东. 储能技术融合分布式可再生能源的现状及发展趋势[J]. 电工技术学报,2016,31(14):1-10,20. LI Jianlin,MA Huimeng,HUI Dong. Present development condition and trends of energy storage technology in the integration of distributed renewable energy[J]. Transactions of China Electrotechnical Society,2016,31(14):1-10,20.
    [7] 姜欣,郑雪媛,胡国宝,等. 市场机制下面向电网的储能系统优化配置[J]. 电工技术学报,2019,34(21):4601-4610. JIANG Xin,ZHENG Xueyuan,HU Guobao,et al. Optimization of battery energy storage system locating and sizing for the gird under the market mechanism[J]. Transactions of China Electrotechnical Society,2019,34(21):4601-4610.
    [8] 张阳. 磷酸铁锂正极材料的制备与改性研究[D]. 西安:西安建筑科技大学,2017. ZHANG Yang. Preparation and modification study of LiFePO4 cathode material[D]. Xi'an:Xi'an University of Architecture and Technology,2017.
    [9] 胡华冲. LiFePO4/Li4Ti5O12电池的研究[D]. 哈尔滨:哈尔滨工程大学,2013. HU Huachong. Study on LiFePO4/Li4Ti5O12 battery[D]. Harbin:Harbin Engineering University,2013.
    [10] 谭义勇. 浅析磷酸铁锂电池[J]. 信息记录材料,2019,20(6):50-51. TAN Yiyong. Brief analysis of lithium iron phosphate battery[J]. Information Recording Materials,2019,20(6):50-51.
    [11] BI Haijun,ZHU Huabing,ZU Lei,et al. A new model of trajectory in eddy current separation for recovering spent lithium iron phosphate batteries[J]. Waste Management,2019(100):1-9.
    [12] 刘俊华,张启超,李程,等. 磷酸铁锂电池模组健康度快速评估方法研究[J]. 电网与清洁能源,2020,36(10):112-118. LIU Junhua,ZHANG Qichao,LI Cheng,et al. Research on the rapid assessment method of the health of lithium iron phosphate battery modules[J]. Power System and Clean Energy,2020,36(10):112-118.
    [13] LIU Shuaihua,LIU Xunliang,DOU Ruifeng,et al. Experimental and simulation study on thermal characteristics of 18650 lithium-iron-phosphate battery with and without spot-welding tabs[J]. Applied Thermal Engineering,2020(166):114648.
    [14] LIU Kang,TAN Quanyin,LIU Lili,et al. Acid-free and selective extraction of lithium from spent lithium iron phosphate batteries via a mechanochemically induced isomorphic substitution[J]. Environmental Science & Technology,2019,53(16):9781-9788.
    [15] 崔志仙,王青松,孙金华. 锂枝晶导致的锂离子电池内短路模拟研究[J]. 火灾科学,2019,28(2):101-112. CUI Zhixian,WANG Qingsong,SUN Jinhua. Numerical study on lithium dendrite-induced internal short circuit of lithium ion battery[J]. Fire Safety Science,2019,28(2):101-112.
    [16] 刘全义,韩旭,孙中正,等. 不同环境体系下锂离子电池热失控特性实验研究[J]. 安全,2019,40(4):42-46. LIU Quanyi,HAN Xu,SUN Zhongzheng,et al. Experimental study on thermal runaway of lithium ion battery under different environmental systems[J]. Safety and Security,2019,40(4):42-46.
    [17] LIU Jialong,DUAN Qiangling,MA Mina,et al. Aging mechanisms and thermal stability of aged commercial 18650 lithium ion battery induced by slight overcharging cycling[J]. Journal of Power Sources,2020(445):1-9.
    [18] 王文和,何腾飞,米红甫,等. 18650型锂离子电池燃烧特性及火灾危险性评估[J]. 安全与环境学报,2019,19(3):729-736. WANG Wenhe,HE Tengfei,MI Hongfu,et al. Experimental test for the combustion features of the 18650-type lithium ion battery and its fire-prone risk assessment[J]. Journal of Safety and Environment,2019,19(3):729-736.
    [19] 赵梦迪. 动力电池热安全应对及其过热临界行为特征研究[D]. 吉林:吉林大学,2019. ZHAO Mengdi. Research on thermal safety management and critical overheating behavior for power batteries[D]. Jilin:Jilin University,2019.
    [20] YE Jiana,CHEN Haodong,WANG Qingsong,et al. Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions[J]. Applied Energy,2016(182):464-474.
    [21] 王绥军,傅凯,官亦标,等. 软包磷酸铁锂电池低温热安全性能研究[J]. 储能科学与技术,2016,5(2):204-209. WANG Suijun,FU Kai,GUAN Yibiao,et al. Low temperature thermal safety performance of soft packaged lithium iron phosphate battery[J]. Energy Storage Science and Technology,2016,5(2):204-209.
    [22] 张磊,张永丰,黄昊,等. 热过载锂电池失控特性及其早期探测模式研究[J]. 消防科学与技术,2018,37(1):55-58. ZHANG Lei,ZHANG Yongfeng,HUANG Hao,et al. Study on the lithium battery thermal runaway characteristics under overheating and the detection mode on battery fires[J]. Fire science and technology,2018,37(1):55-58.
    [23] 黎可,王青松,孙金华. 基于火探管式的锂离子电池灭火技术研究[J]. 火灾科学,2018,27(2):124-131. LI Ke,WANG Qingsong,SUN Jinhua. Development of fire suppression technology for lithium ion batteries based on fire detection pipe[J]. Fire Safety Science,2018,27(2):124-131.
    [24] 吴静云,黄峥,郭鹏宇. 储能用磷酸铁锂(LFP)电池消防技术研究进展[J]. 储能科学与技术,2019,8(3):495-499. WU Jingyun,HUANG Zheng,GUO Pengyu. Research progress on fire protection technology of LFP lithium ion battery used in energy storage power station[J]. Energy Storage Science and Technology,2019,8(3):495-499.
    [25] 彭志强,卜强生,袁宇波,等. 电网侧储能电站监控系统体系架构及关键技术[J]. 电力系统保护与控制,2020,48(10):61-70. PENG Zhiqiang,BU Qiangsheng,YUAN Yubo,et al. Architecture and key technologies of a monitoring and control system for an energy storage power station[J]. Power System Protection and Control,2020,48(10):61-70.
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 02,2020
  • Revised:September 16,2020
  • Adopted:March 04,2020
  • Online: February 03,2021
  • Published: January 28,2021
Article QR Code