A top-level design for time-delay uncertainty analysis of situational awareness in smart distribution network
Author:
Fund Project:

Interval affine method for time-delay uncertainty of situational awareness in intelligent distribution network

  • Article
  • | |
  • Metrics
  • |
  • Reference [33]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Situation awareness of smart distribution network (SASDN) is the basis of stable operation and precise scheduling. Distribution network has a broad application prospect. However, SASDN is faced with a series of time-delay uncertainties caused by communication delay, scientific calculation time, and different sub-station system response time, which cannot meet the requirements of accurate scheduling of intelligent distribution network and limits its application scope. For this reason, the time-delay uncertainty of intelligent distribution network situation awareness is analyzed and expounded from the technical level. Firstly, the research status of this problem at home and abroad is introduced. Secondly, the mechanism and influence of time-delay uncertainty of situation awareness in intelligent distribution network are analyzed . Finally, the general framework of the study on the time-delay uncertainty of situation awareness in smart distribution network is constructed to provide reference for the future research.

    Reference
    [1] PANTELI M, CROSSLEY P, KIRSCHEN D S, et al. Assessing the impact of insufficient situationawareness on power system operation[J]. IEEE Transactions on Power Systems, 2013, 28(3):2967-2977.
    [2] GHOSH S, GHOSH D, MOHANTA D K. Situational awarenessenhancement of smart grids using intelligent maintenance scheduling of phasormeasurement sensors[J]. IEEE Sensors Journal, 2017, 17(23):7685-7693.
    [3] PHAM T N, NAHAVANDI S, TRINH H, et al. Decentralized bounded inputbounded output stabilization of perturbed interconnected time-delay power systems withenergy storages[J]. Electrical Power and Energy Systems, 2017, 93:51-64.
    [4] SHAO Hanyong, LI Huanhuan, ZHU Chuanjie. New stability results for delayed neuralnetworks[J]. Applied Mathematics and Computation, 2017, 31:324-334.
    [5] LIN Wenjuan, HE Yong, ZHANG Chuanke, et al. Stability analysis of neural networks withtime-varying delay:enhanced stability criteria and conservatism comparisons[J]. Communication in Nonlinear Science & Numerical Simulation, 2018, 54:118-135.
    [6] EDGAR G K, CATHERWOOD D, BAKER S, et al. Quantitative analysis of situationawareness:modelling and measuring situation awareness using signal detection theory[J]. Ergonomics, 2018,61(6):762-777.
    [7] CHOI E J, CHO S, JO J H, et al. Performance analysis of sensor systemsfor space situational awareness[J]. Journal of Astronomy and Space Sciences, 2017, 34(4):303-313.
    [8] BOTEGA L C, DE S, JÉSSICA O, et al. Methodology for data and information quality assessment in the context of emergency situational awareness[J]. Universal Access in the Information Society, 2016.
    [9] 王守相, 梁栋, 葛磊蛟. SASDN和态势利导关键技术[J]. 电力系统自动化, 2016, 40(12):2-8. WANG Shouxiang, LIANG Dong, GE Leijiao. Key technologies of situation awareness and orientation for smart distribution systems[J]. Automation of Electric Power Systems, 2016, 40(12):2-8.
    [10] 杨胜春, 汤必强, 姚建国, 等. 基于态势感知的电网自动智能调度架构及关键技术[J]. 电网技术, 2014, 38(1):33-39. YANG Shengchun, TANG Biqiang, YAO Jianguo, et al. The architecture and key technology of automatic intelligent power dispatching based on situational awareness[J].Power System Technology, 2014, 38(1):33-39.
    [11] 王晓辉, 陈乃仕, 李烨, 等. 基于态势联动的主动配电网多源优化调度框架[J]. 电网技术, 2017, 41(2):349-354. WANG Xiaohui, CHEN Naishi, LI Ye, et al. Architecture and key technologies for situational awareness based automatic intelligent dispatching of power grid[J]. Power System Technology, 2017, 41(2):349-354.
    [12] 章坚民, 陈昊, 陈建, 等. 智能电网态势图建模及态势感知可视化的概念设计[J]. 电力系统自动化, 2014, 38(9):168-176. ZHANG Jianmin, CHEN Hao, CHEN Jian, et al. Smart grid situation awareness diagram modeling and conceptual design of situation awareness visualization[J]. Automation of Electric Power Systems, 2014, 38(9):168-176.
    [13] 徐成, 梁睿, 程真何, 等. 面向能源互联网的智能配电网安全态势感知[J]. 电力自动化设备, 2016, 36(6):13-18. XU Cheng, LIANG Rui, CHEN Zhenhe, et al. Security situation awareness of smart distribution grid for future energy internet[J]. Power Automation Equipment, 2016, 36(6):13-18.
    [14] 黄伟, 刘琦, 杨舒文, 等. 基于主动配电系统供电能力的安全态势感知方法[J]. 电力自动化设备, 2017, 37(8):74-80. HUANG Wei, LIU Qi, YANG Shuwen, et al. Security situation awareness based on power-supply ability model of active distribution system[J]. Power Automation Equipment, 2017, 37(8):74-80.
    [15] 陆一鸣, 刘东, 柳劲松, 等. 智能配电网信息集成需求及模型分析[J]. 电力系统自动化, 2010, 34(8):1-4, 96. LU Yiming, LIU Dong, LIU Jinsong, et al. Information integration demand and model analysis for smart distribution grid[J]. Automation of Electric Power Systems, 2010, 34(8):1-4, 96.
    [16] 吴在军, 徐俊俊, 余星火, 等. 主动配电网状态估计技术评述[J]. 电力系统自动化, 2017, 41(13):182-191. WU Zaijun, XU Junjun, YU Xinghuo, et al. Review on state estimation technique of active distribution network[J]. Automation of Electric Power Systems, 2017, 41(13):182-191.
    [17] 丁涛, 崔翰韬, 顾伟, 等. 基于区间和仿射运算的不确定潮流算法[J]. 电力系统自动化, 2012, 36(13):51-55, 115. DING Tao, CUI Hantao, GU Wei, et al. An uncertainty power flow algorithm based on interval and affine arithmetic[J]. Automation of Electric Power Systems, 2012, 36(13):51-55, 115.
    [18] 胡健, 付立军,马凡,等. 基于仿射算术优化的不确定系统区间潮流快速分解法[J]. 电工技术学报, 2016, 31(23):125-131. HU Jian, FU Lijun, MA Fan, et al. Fast decoupled power flow calculation of uncertainty system based on interval affine arithmetic optimization[J]. Transactions of China Electrotechnical Society, 2016, 31(23):125-131.
    [19] 董旭柱, 黄邵远, 陈柔伊, 等. 智能配电网自愈控制技术[J]. 电力系统自动化, 2012, 36(18):17-21. DONG Xuzhu, HUANG Shaoyuan, CHEN Rouyi, et al. Self-healing control technology of intelligent distribution network[J]. Automation of Electric Power Systems, 2012, 36(18):17-21.
    [20] 王守相, 葛磊蛟, 王凯. 智能配电系统的内涵及其关键技术[J]. 电力自动化设备, 2016, 36(6):1-6. WANG Shouxiang, GE Leijiao, WANG Kai. Main contents and key technologies of smart distribution system[J]. Electric Power Automation Equipment, 2016, 36(6):1-6.
    [21] 王守相, 葛磊蛟. 主动配电系统运行与控制关键技术[J]. 电力建设,2015, 36(1):85-90. WANG Shouxiang, GE Leijiao. Key technology of operation and control of active distribution system[J]. Electric Power Construction, 2015, 36(1):85-90.
    [22] 杨宇荣,许永军,杜东威,等. 基于网络分布式规约的配电网安全防护方案应用[J]. 浙江电力,2019,38(3):48-53. YANG Yurong,XU Yongjun,DU Dongwei,et al. Application of distribution network security authentication scheme based on DNP 3.0[J]. Zhejiang Electric Power, 2019, 38(3):48-53.
    [23] 于丹文,杨明, 翟鹤峰, 等. 鲁棒优化在电力系统调度决策中的应用研究综述[J]. 电力系统自动化, 2016, 40(7):134-143, 148. YU Danwen, YANG Ming, ZHAI Hefeng, et al. An overview of robust optimization used for power system dispatch and decision-making[J]. Automation of Electric Power Systems, 2016, 40(7):134-143, 148.
    [24] 王宗杰, 郭志忠. 节点类型扩展潮流计算的灵敏度分析[J]. 哈尔滨工业大学学报, 2017, 49(3):35-39. WANG Zongjie, GUO Zhizhong. Sensitivity factor analysis for bus type extended load flow[J]. Journal of Harbin Institute of Technology, 2017, 49(3):35-39.
    [25] NGUYEN P H, BLAAUWBROEK N, NGUYEN C, et al. Interfacing application foruncertainty reduction in smart energy systems utilizing distributed intelligence[J]. Renewable and Sustainable Energy Reviews, 2017(80):1312-1320.
    [26] 贾宏杰.电力系统时滞稳定性[M]. 北京:科学出版社, 2017. JIA Hongjie.Delay stability of power system[M]. Beijing:Science Press, 2017.
    [27] 余晓丹, 贾宏杰, 王成山. CTODE 和 CTDAE 模型及其在电力系统时滞稳定分析中的应用[J]. 中国科学:技术科学, 2013, 43(5):533-544. YU Xiaodan, JIA Hongjie, WANG Chengshan. CTODE and CTDAE models and their applications in time-delay stability analysis of power systems[J]. Science China:Technical Science, 2013, 43(5):533-544.
    [28] 姜懿郎, 贾宏杰, 姜涛, 等. 电力系统单时滞稳定裕度求解模型简化方法[J]. 电力系统自动化, 2014, 38(2):46-52. JIANG Yilang, JIA Hongjie, JIANG Tao, et al. A model simplification method for solving stability margin of power system with single time-delay[J]. Automation of Electric Power Systems, 2014, 38(2):46-52.
    [29] LIU Zhuangzhuang, WANG Tianshu, LI Junfeng. Non-intrusive hybrid interval method foruncertain nonlinear systems using derivative information[J]. Acta Mechanica Sinica,2016, 32(1):170-180.
    [30] 余晓丹, 董晓红, 贾宏杰, 等. 基于朗伯函数的时滞电力系统 ODB与 OEB判别方法[J]. 电力系统自动化, 2014, 38(6):33-37, 111. YU Xiaodan, DONG Xiaohong, JIA Hongjie, et al. Discriminating method for OEB and ODB in time-delayed power systems based on lambert W function[J]. Automation of Electric Power Systems, 2014, 38(6):33-37, 111.
    [31] SONG Haiyang, YU Kaiping, LI Xiangyang, et al. Affine arithmetic applied to transient statistical energy analysis of a two-oscillator system[J]. Mechanics Research Communications, 2015, 70:12-16.
    [32] WANG Yang, WU Zaijun, DOU Xiaobo, et al. Interval power flow analysis via multi-stageaffine arithmetic for unbalanced distribution network[J]. Electric Power Systems Research, 2017, 142:1-8.
    [33] VACCARO A, CANIZARES CA, VILLACCI D. An affine arithmetic-based methodology forreliable power flow analysis in the presence of data uncertainty[J]. IEEE Transactions on Power Systems, 2010, 25(2):624-632.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 04,2019
  • Revised:November 30,2019
  • Adopted:December 14,2019
  • Online: June 08,2020
  • Published: May 28,2020
Article QR Code