Global fast terminal sliding mode control for improving APF harmonic compensation capability
Author:
Clc Number:

TM76

Fund Project:

Project Supported by National Natural Science Foundation of China(NSFC) (51207097).

  • Article
  • | |
  • Metrics
  • |
  • Reference [21]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Harmonic current tracking control in harmonic compensation is one of the key factors to measure the performance of active power filter. Aiming at the problem of adjusting linear sliding surface parameters anyway cannot make the tracking error converge to zero in a finite time for ordinary sliding mode control, harmonic current tracking control strategy based on global fast terminal sliding mode control in current loop is proposed. The method introduces nonlinear function based on a linear sliding surface, to make up for shortcomings of ordinary sliding mode control which can achieve gradual convergence of state, while improving the transient performance of the sliding mode control and eliminating the switching term, which essentially weakens the chattering. The steady-state and transient performance tests of active power filter are carried out without changing the harmonic detection link, the comparison between the global fast terminal sliding mode control proposed and the sliding mode control of the conventional exponential approach law verify the correctness and effectiveness of the control strategy proposed .

    Reference
    [1] 刘军成. 电能质量分析方法[M]. 北京:中国电力出版社,2011. LIU Juncheng.Power quality analysis method[M]. Beijing:China Electric Power Press, 2011.
    [2] 杨龙月,刘建华,王崇林. 有源电力滤波器精确反馈线性化准滑模变结构控制[J]. 中国电机工程学报,2014,34(33):5868-5875. YANG Longyue, LIU Jianhua, WANG Chonglin. Quasi-sliding mode control of active power filters based on exact feedback linearization[J]. Proceedings of the CSEE, 2014, 34(33):5868-5875.
    [3] 周卫平,吴正国,刘大明,等. 有源电力滤波器变趋近律滑模变结构控制[J]. 中国电机工程学报,2005,25(23):91-94. ZHOU Weiping, WU Zhengguo, LIU Daming, et al. The variable reaching law sliding mode control strategy for three-phase three-wire active power filter[J]. Proceedings of the CSEE, 2005, 25(23):91-94.
    [4] 刘国海,张琛,陈兆岭,等. 基于全程滑模变结构控制的有源电力滤波器[J]. 电气传动,2014,44(11):29-32. LIU Guohai, ZHANG Chen, CHEN Zhaoling, et al. Global sliding mode variable structure control for active power filter[J]. Electric Drive, 2014, 44(11):29-32.
    [5] 李云祥,沈志达,郑丹. 改进趋近率滑模控制在APF中的应用实现[J]. 计算机工程与设计,2015,36(12):3402-3407. LI Yunxiang, SHEN Zhida, ZHENG Dan. Application of improved reaching law sliding mode control in active power filter[J]. Computer Engineering and Design, 2015, 36(12):3402-3407.
    [6] 李珊,封佳池,史丽萍,等. 四桥臂APF精确反馈线性化滑模控制[J]. 电力电子技术,2019,53(3):91-94. LI Shan, FENG Jiachi, SHI Liping, et al. Exact feedback linearization and sliding mode control based on four-leg active power filter[J]. Power Electronics, 2019, 53(3):91-94.
    [7] 周卫平,杨宣访,师维,等. 三相三线有源电力滤波器新型控制策略[J]. 电力系统保护与控制,2018,46(10):55-60. ZHOU Weiping, YANG Xuanfang, SHI Wei, et al. A novel control approach of three-phase three-wire active power filter[J]. Power System Protection and Control, 2018, 46(10):55-60.
    [8] RAHMANI S,MENDALEK N,AL-HADDAD K.Experimental design of a nonlinear control technique for three-phase shunt active power filter[J].IEEE Transactions Industrial Electronics,2010,57(10):3364-3375.
    [9] 王雪, 高云广, 吝伶艳, 等. 有源电力滤波器的研究现状与展望[J]. 电力系统保护与控制, 2019, 47(1):177-186. WANG Xue, GAO Yunguang, LIN Lingyan, et al. Research status and prospect of active power filter[J]. Power System Protection and Control, 2019, 47(1):177-186.
    [10] 张国澎, 周犹松, 郑征, 等. 有源电力滤波器指定次谐波补偿优化限流策略研究[J]. 电力系统保护与控制, 2018, 46(16):46-53. ZHANG Guopeng, ZHOU Yousong, ZHENG Zheng, et al. Research on current-limiting optimization strategy for specific harmonic compensation of active power filter[J]. Power System Protection and Control, 2018, 46(16):46-53.
    [11] 黄崇鑫,王奔,邹超,等. 并联有源电力滤波器新型控制策略仿真研究[J]. 电力系统保护与控制,2009,37(5):52-55. HUANG Chongxin, WANG Ben, ZOU Chao, et al. Simulation research on shunt active power filter with a novel control method[J]. Power System Protection and Control, 2009, 37(5):52-55.
    [12] 鲁伟,李春文,徐长波. 并联混合有源滤波器逆系统解耦控制[J]. 控制理论与应用,2013,30(9):1145-1152. LU Wei, LI Chunwen, XU Changbo. Inverse system method based decoupling control of shunt hybrid active power filter[J]. Control Theory & Applications, 2013, 30(9):1145-1152.
    [13] 巫付专. 电能变换与控制[M]. 北京:电子工业出版社,2014. WU Fuzhuan.Power conversion and control[M]. Beijing:Electronic Industry Press, 2014.
    [14] 杨君,王兆安,邱关源. 电力有源滤波器直流侧电压的控制[J]. 电力电子技术,1996(4):48-50. YANG Jun, WANG Zhao'an, QIU Guanyuan. DC-side voltage control of shunt active power filter[J]. Power Electronics, 1996(4):48-50.
    [15] 陈兆岭. 有源电力滤波器谐波电流检测与跟踪控制研究[D]. 镇江:江苏大学,2013. CHEN Zhaoling. Harmonic current detection and tracking control of active power filter[D]. Zhenjiang:Jiangsu University, 2013.
    [16] 舒朝君,崔浩,朱英伟,等. 基于RLS算法的并联型APF全局积分滑模变结构控制[J]. 四川大学学报(工程科学版),2016,48(6):208-215. SHU Chaojun, CUI Hao, ZHU Yingwei, et al. Global integral sliding mode control for shunt active power filter based on RLS algorithm[J]. Journal of Sichuan University(Engineering Science Edition), 2016, 48(6):208-215.
    [17] 王鹤,李耀峰,张守龙,等. 基于自适应Terminal滑模的混沌振荡控制[J]. 电力系统及其自动化学报,2013,25(3):152-157. WANG He, LI Yaofeng, ZHANG Shoulong, et al. Chaotic oscillation control based on adaptive terminal sliding mode[J]. Proceedings of the CSU-EPSA, 2013, 25(3):152-157.
    [18] 陶彩霞, 赵凯旋, 牛青. 考虑滑模抖振的永磁同步电机模糊超螺旋滑模观测器[J]. 电力系统保护与控制, 2019, 47(23):11-18. TAO Caixia, ZHAO Kaixuan, NIU Qing. Fuzzy super-spiral sliding mode observer for permanent magnet synchronous motor considering sliding mode buffeting[J]. Power System Protection and Control, 2019, 47(23):11-18.
    [19] 于永进, 王家斌, 王艳. 基于自适应全局滑模的电力系统混沌振荡控制[J]. 电力系统保护与控制, 2019, 47(16):43-49. YU Yongjin, WANG Jiabin, WANG Yan. Chaotic oscillation control in power system based on adaptive total sliding mode[J]. Power System Protection and Control, 2019, 47(16):43-49.
    [20] 刘金琨. 滑模变结构控制MATLAB仿真[M]. 北京:清华大学出版社,2005. LIU Jinkun.MATLAB simulation of sliding mode variable structure control[M]. Beijing:Tsinghua University Press, 2005.
    [21] 黄清,陈兵. 有源电力滤波器稳态和动态特性分析[J]. 电力工程技术,2018,37(4):78-83. HUANG Qing, CHEN Bing. Active power filter under steady and dynamic state[J]. Electric Power Engineering Technology, 2018, 37(4):78-83.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:1386
  • PDF: 1905
  • HTML: 0
  • Cited by: 0
History
  • Received:November 18,2019
  • Revised:December 09,2019
  • Adopted:August 06,2019
  • Online: June 08,2020
  • Published: May 28,2020
Article QR Code