Pattern recognition of partial discharge based on fusion extreme learning machine
Author:
Clc Number:

TM855

  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Partial discharge is the main form of early insulation failure of electrical equipment. Pattern recognition of discharge type is of great significance for the estimation of equipment insulation performance. Considering that the extreme learning machine (ELM) method has the advantages of simple structure and fast training speed, yet the initial parameter selection is random and the algorithm is unstable. A pattern recognition method based on fusion ELM algorithm for partial discharge is proposed. Considering the different judgement precisions based on variable features, the adaptive weight assignment is used to achieve the decision-level fusion of the output. In this paper, four physic discharge models are designed to simulate typical partial discharge defects. Discharge signal waveform and phase-amplitude spectrum is collected by high-frequency current transformer method, sufficient samples of experiment data are obtained to extract time-frequency domain and statistical features for classification. The result shows that the fusion ELM algorithm is superior to the traditional ELM algorithm and BP neural network in the recognition accuracy and stability without sacrificing training speed.

    Reference
    [1] FOX G H,SUTHERLAND P E. A new standard for electrical apparatus applications in industry[J]. IEEE Transactions on Industry Applications,2014,50(2):1266-1273.
    [2] 王昌长,李福祺,高胜友. 电力设备的在线监测与故障诊断[M]. 北京:清华大学出版社,2006. WANG Changchang,LI Fuqi,GAO Shengyou. On-line monitoring and diagnosis for power equipments[M]. Beijing:Tsinghua University Press,2006.
    [3] 张煦, 张向伍. 计及运行工况影响的电力设备检修策略分析[J]. 电力系统保护与控制, 2017, 45(1):74-80. ZHANG Xu, ZHANG Xiangwu. Comparative analysis on power equipment maintenance strategies considering the effect of operating conditions[J]. Power System Protection and Control, 2017, 45(1):74-80.
    [4] 马钊,周孝信,尚宇炜,等. 未来配电系统形态及发展趋势[J]. 中国电机工程学报,2015,35(6):1289-1298. MA Zhao,ZHOU Xiaoxin,SHANG Yuwei,et al. Form and development trend of future distribution system[J]. Proceedings of the CSEE,2015,35(6):1289-1298.
    [5] 李军浩,韩旭涛,刘泽辉,等. 电气设备局部放电检测技术述评[J]. 高电压技术,2015,41(8):2583-2601. LI Junhao,HAN Xutao,LIU Zehui,et al. Review on partial discharge measurement technology of electrical equipment[J]. High Voltage,2015,41(8):2583-2601.
    [6] 徐艳春,王泉,陈国训,等. 基于多重信号分类(MUSIC)算法的变压器局部放电定位研究[J]. 电网与清洁能源,2017,33(3):35-42. XU Yanchun, WANG Quan, CHEN Guoxun, et al. Research on partial discharge location of transformers based on multiple signal classification algorithm [J]. Power System and Clean Energy,2017,33(3):35-42.
    [7] 朱正国,何斌斌,胡冉,等. 基于卷积神经网络的开关柜局部放电监测[J]. 电网与清洁能源,2017,33(3):17-23. ZHU ZhengGuo,HE Binbin,HU Ran,et al. Switch-gear partial discharge detection based on convolutional neural network [J]. Power System and Clean Energy,2017,33(3):17-23.
    [8] 唐炬,龚宁淘,李伟,等. 高压交联聚乙烯电缆附件局部放电特性分析[J]. 重庆大学学报,2009,32(5):528-534. TANG Ju,GONG Ningtao,LI Wei,et al. Characteristic analysis of partial discharge in high-voltage XLPE cable accessories[J]. Journal of Chongqing University,2009,32(5):528-534.
    [9] 程养春,刁常晋,刘少宇,等. 恒定电压下油纸绝缘局部放电发展规律及缺陷状态诊断[J]. 高电压技术,2013,39(5):1061-1068. CHENG Yangchun,DIAO Changjin,LIU Shaoyu,et al. Developing laws and severity diagnosis of partial discharge defects on oil-paper insulation[J]. High Voltage,2013,39(5):1061-1068.
    [10] High-voltage test techniques:partial discharge measurements:IEC 60270 [S]. Geneva,Switzerland:International Electrotechnical Commission,2015.
    [11] 李正明, 钱露先, 李加彬. 基于统计特征与概率神经网络的变压器局部放电类型识别[J]. 电力系统保护与控制, 2018, 46(13):55-60. LI Zhengming, QIAN Luxian, LI Jiabin. Type recognition of partial discharge in power transformer based on statistical characteristics and PNN[J]. Power System Protection and Control, 2018, 46(13):55-60.
    [12] 陈焕栩, 解浩, 张建文, 等. 基于灰度共生矩阵纹理特征的局部放电模式识别[J]. 电力系统保护与控制, 2018, 46(5):25-30. CHEN Huanxu, XIE Hao, ZHANG Jianwen, et al. Partial discharge pattern recognition based on texture feature of gray level co-occurrence matrix[J]. Power System Protection and Control, 2018, 46(5):25-30.
    [13] 刘凡,张昀,姚晓,等. 基于K近邻算法的换流变压器局部放电模式识别[J]. 电力自动化设备,2013,33(5):89-93. LIU Fan,ZHANG Yun,YAO Xiao,et al. Recognition of PD mode based on KNN algorithm for converter transformer[J]. Electric Power Automation Equipment,2013,33(5):89-93.
    [14] 靖小平,彭小圣,姜伟,等. 基于K-means聚类算法的自动图谱识别在电缆局部放电在线监测系统中的应用[J]. 高电压技术,2012,38(9):2437-2446. JING Xiaoping,PENG Xiaosheng,JIANG Wei,et al. Phase resolved partial discharge pattern recognition method for on-line cable condition monitoring system based on K-means clustering[J]. High Voltage,2012,38(9):2437-2446.
    [15] 杨孝华,廖瑞金,胡建林,等. 基于BP人工神经网络的XLPE电力电缆局部放电的模式识别[J]. 高压电器,2003(4):35-37. YANG Xiaohua,LIAO Ruijin,HU Jianlin,et al. Partial discharge pattern recognition for XLPE power cable based on back-propagation artificial neural network[J]. High Voltage Apparatus,2003(4):35-37.
    [16] PATTANADECH N, NIMSANONG P, POTIBEJKUL S, et al. Partial discharge classification using probabilistic neural network model[C]∥2015 18th IEEE International Conference on Electrical Machines & Systems. Pattaya,Thailand,2015:1176-1180.
    [17] 杨帆,王干军,彭小圣,等. 基于卷积神经网络的高压电缆局部放电模式识别[J]. 电力自动化设备,2018,38(5):123-128. YAN Fan,WANG Ganjun,PENG Xiaosheng,et al. Partial discharge pattern recognition of high-voltage cables based on convolutional neural network[J]. Electric Power Automation Equipment,2018,38(5):123-128.
    [18] 陆国俊,熊俊,李光茂,等. 振荡波电压下XLPE电缆局部放电模式识别研究[J]. 高压电器,2017,53(2):95-100,107. LU Guojun,XIONG Jun,LI Guangmao,et al. Pattern recognition of XLPE cable partial discharge under oscillating voltage[J]. High Voltage Apparatus,2017,53(2):95-100,107.
    [19] 尚海昆,苑津莎,王瑜,等. 多核多分类相关向量机在变压器局部放电模式识别中的应用[J]. 电工技术学报,2014,29(11):221-228. SHANG Haikun,YUAN Jinsha,WANG Yu,et al. Partial discharge pattern recognition in power transformer based on multi-kernel multi-class relevance vector machine[J]. Transactions of China Electrotechnical Society,2014,29(11):221-228.
    [20] BHASKAR K,SINGH S N. AWNN-assisted wind Power forecasting using feed-forward neural network[J]. IEEE Transactions on Sustainable Energy,2012,3(2):306-315.
    [21] SUNITHA R,KUMAR S K,MATHEW A T. Online static security assessment module using artificial neural networks[J]. IEEE Transactions on Power Systems,2013,28(4):4328-4335.
    [22] 王欣,梁辉,秦斌. 基于OSELM的无刷直流电机无位置传感器控制[J]. 电机与控制学报,2018(11):82-88. WANG Xin,LIANG Hui,QIN Bin. Sensorless control for brushless DC motors based on OSELM[J]. Electric Machines and Control,2018(11):82-88.
    [23] 胥威汀, 刘俊勇, 唐权, 等. 含风电系统断面TTC运行规则的极限学习机提取方法[J]. 电力系统保护与控制, 2018, 46(23):135-142. XU Weiting, LIU Junyong, TANG Quan, et al. Extreme learning machine-based estimation of total transfer capability of transmission corridors in wind-integrated power systems[J]. Power System Protection and Control, 2018, 46(23):135-142.
    [24] 林锐涛, 潘可达, 许韩斌, 等. 基于用户电量特征匹配与鲁棒极限学习机的用户短期电量预测[J]. 智慧电力, 2018, 46(11):76-82. LIN Ruitao, PAN Keda, XU Hanbin, et al. Short-term electricity consumption forecasting for power consumers based on outlier robust extreme learning machine and electricity consumption characteristics of similarity customers[J]. Smart Power, 2018, 46(11):76-82.
    [25] HUANG G B,ZHU Q Y, SIEW C K. Extreme learning machine:a new learning scheme of feedforward neural networks[C]∥2004 IEEE International Joint Conference on Neural Networks. Budapest,Hungary,2004:985-990.
    [26] HUANG G B,CHEN L,SIEW C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE Transactions on Neural Network,2006,17(4):879-892.
    [27] YANG J,YANG J Y,ZHANG D,et al. Feature fusion:parallel strategy vs. serial strategy[J]. Pattern Recognition,2003,36(6):1369-1381.
    [28] 李刚,于长海,范辉,等. 基于多级决策融合模型的电力变压器故障深度诊断方法[J]. 电力自动化设备,2017,37(11):138-144. LI Gang,YU Changhai,FAN Hui,et al. Deep fault diagnosis of power transformer based on multilevel decision fusion model[J]. Electric Power Automation Equipment,2017,37(11):138-144.
    [29] 刘蓉,李继胜,田维坚,等. XLPE电力电缆典型缺陷局部放电测量与分析[J]. 高压电器,2015,51(2):44-50. LIU Rong,LI Jisheng,TIAN Weijian,et al. Measurement and analysis of partial discharge on typical defects in XPLE power cable[J]. High Voltage Apparatus,2015,51(2):44-50.
    [30] 魏振,张强,齐波,等. 高压开关柜典型缺陷局部放电TEV特征的研究[J]. 高压电器,2014,50(2):60-67. WEI Zhen,ZHANG Qiang,QI Bo,et al. Analysis of TEV caused by partial discharge of typical faults in HV switchgear[J]. High Voltage Apparatus,2014,50(2):60-67.
    [31] 郭灿新,张丽,钱勇,等. XLPE电力电缆中局部放电检测及定位技术的研究现状[J]. 高压电器,2009,45(3):56-60. GUO Canxin,ZHANG Li,QIAN Yong,et al. Current status of partial discharge detection and location techniques in XLPE power cable[J]. High Voltage Apparatus,2009,45(3):56-60.
    [32] 唐志国,唐铭泽,李金忠,等. 电气设备局部放电模式识别研究综述[J]. 高电压技术,2017,43(7): 2263-2277. TANG Zhiguo,TANG Mingze,LI Jinzhong,et al. Review on partial discharge pattern recognition of electrical equipment[J]. High Voltage,2017,43(7): 2263-2277.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:1089
  • PDF: 2160
  • HTML: 0
  • Cited by: 0
History
  • Received:March 07,2019
  • Revised:April 14,2019
  • Adopted:January 11,2019
  • Online: September 30,2019
  • Published: September 28,2019
Article QR Code