Transmission characteristics of CSCC-HVDC based on commutation area
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

Control and Protection of Large-scale Hybrid AC and DC Grid

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    DC access capability of the receiving power grid is one of the key issues in the planning and operation of the HVDC transmission system. Starting from the influence of the controllable capacitor commutating converter connected to the weak AC receiving power grid on the commutation failure, based on the analysis of the basic principle and topology of the controllable capacitor commutating converter, a steady-state mathematical model of the controllable capacitor commutating converter is established. In order to get closer to engineering practice and improve control precision, the response characteristics of the DC control system are considered, and the response control strategy of the controllable capacitor commutated converter with the commutation voltage time area as the control target is studied. For the commutation failure caused by short circuit fault, a fault recovery strategy using a MOV-parallel gap combination protection device is proposed to shorten the fault recovery time of the capacitive commutated converter during the fault. Finally, based on the PSCAD/EMTDC platform, the simulation verification and comparison with other schemes prove that the above control strategy is effective in reducing the risk of commutation failure and fault recovery of weak receiving end network.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 06,2018
  • Revised:October 16,2018
  • Adopted:October 18,2018
  • Online: January 28,2019
  • Published: January 28,2019
Article QR Code