Hybrid bad-data detection and parameter identification based on augmented state estimation
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [22]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    With presence of hybrid bad telemetry data and error parameter in power system, the validity of parameter identification and estimation methods of whole network cannot be guaranteed due to the fact that bad data will affect the parameter identification accuracy. It presents a detection and identification approach of bad-data based on augmented state estimation. First of all, the bad data are estimated whether they are bad telemetry data or parameters with error according to the residual balance degree. After deleting bad telemetry data, parameters with errors are kept within a certain area using node partition and then are modified according to augmented state estimation. The example results show that the proposed method can identify the bad telemetry data and parameters with error effectively, and interaction between the bad data can be avoid through parameter partition, so that the estimation accuracy of the suspicious parameters can be improved.

    Reference
    [1] 郭烨, 张伯明, 吴文传, 等. 直角坐标下含零注入约束的电力系统状态估计修正牛顿法[J]. 中国电机工程报, 2012, 32(19):96-100. GUO Ye, ZHANGBoming, WU Wenchuan, et al. Power system state estimation solution with zero injection constraints using modified newton method[J]. Proceedings of the CSEE, 2012, 32(19):96-100.
    [2] 陈建强,洪彬倬,文波. 基于扩展卡尔曼滤波算法的电网动态状态估计[J]. 广东电力,2017,30(10):86-92. CHEN Jianqiang, HONG Binzhuo, WEN Bo. Dynamic state estimation on power grid based on extended Kalman filter algorithm[J]. Guangdong Electric Power,2017,30(10):86-92.
    [3] 李朋, 赵克壮. 基于优化模型的配电系统状态估计方法[J]. 智慧电力, 2017, 45(11):47-51. LI Peng, ZHAO Kezhuang. State estimation method for distribution system based on optimization model[J]. Smart Power, 2017, 45(11):47-51.
    [4] 黄石, 冯蒙霜. 计及非线性的电力系统状态估计算法研究[J]. 陕西电力, 2017, 45(1):51-56. HUANG Shi, FENG Mengshuang. Research on power system state estimation algorithm considering nonlinearity[J]. Shaanxi Electric Power, 2017, 45(1):51-56.
    [5] 徐凌逊, 范韩璐, 祁宇, 等. 一种配电网量测系统设计及优化方案[J]. 电力工程技术, 2017, 36(5):143-148. XU Lingxun, FAN Hanlu, QI Yu, et al. Design and optimization of distribution network measurement system[J]. Electric Power Engineering Technology, 2017, 36(5):143-148.
    [6] 卫志农, 张云岗, 郑玉平. 基于量测量突变检测的新方法. 中国电机工程学报, 2002, 22(6):34-37. WEI Zhinong, ZHANG Yungang, ZHENG Yupi. The improvement of measurement suddenly change detection method[J]. Proceedings of the CSEE, 2002, 22(6):34-37.
    [7] 黄彦全, 肖建, 李云飞, 等. 基于量测数据相关性的电力系统不良数据检测和辨识新方法[J]. 电网技术, 2006, 30(2):69-74. HUANG Yanquan, XIAO Jian, LI Yunfei, et al. A new method to detect and identify bad data based on correlativity of measured data in power system[J]. Power System Technology, 2006, 30(2):69-74.
    [8] SHYHJIER H, JEUMIN L. Enhancement of anomalous data mining in power system predicting-aided state estimation[J]. IEEE Trans on power Systems, 2004, 19(1):610-619.
    [9] ALSAC O, VEMPATI N, STOTT B, et al. Generalized state estimation[J]. IEEE Trans on Power Systems, 1998, 31(4):1069-1075.
    [10] 李大路, 李蕊, 孙元章, 等. 计及广域测量信息的状态估计错误参数识别与修正[J]. 电力系统自动化, 2008, 32(14):11-15. LI Dalu, LI Rui, SUN Yuanzhang, et al. Recognizing and correcting the wrong parameters in state estimation considering the WAMS measurements[J]. Automation of Electric Power Systems, 2008, 32(14):11-15.
    [11] 钟全辉,张以全,肖少华,等. 基于灰色预测理论的区域电量概率预测方法及其应用[J]. 浙江电力,2018,37(1):19-22. ZHONG Quanhui,ZHANG Yiquan,XIAO Shaohua,et al. Probability forecasting method of regional electricity quantity based on grey forecasting theory and its application[J]. Zhejiang Electric Power, 2018, 37(1):19-22.
    [12] 何桦, 柴京慧, 卫志农, 等. 基于量测残差的改进参数估计方法[J]. 电力系统自动化, 2007, 23(8):33-36. HE Hua, CHAI Jinghui, WEI Zhinong, et al. Improved method of parameter estimation based on measurement residuals[J]. Automation of Electric Power Systems, 2007, 23(8):33-36.
    [13] 颜伟, 宋林滔, 余娟, 等. 基于权函数的电网参数分区辨识与估计方法[J]. 电力系统自动化, 2001, 35(5):27-29. YAN Wei, SONGLintao, YU Juan, et al. A divisional identification and estimation method of network parameter errors based on weight function[J]. Automation of Electric Power Systems, 2001, 35(5):27-29.
    [14] 颜全椿, 郑明忠, 梁伟. 计及距离空间的电网参数误差支路选取方法[J]. 江苏电机工程, 2015, 34(5):25-28. YAN Qaunchun, ZHENG Mingzhong, LIANG Wei. A network parameter error identification method considering distance space[J]. Jiangsu Electrical Engineering, 2015, 34(5):25-28.
    [15] 陈晓刚, 易永辉, 江全元, 等. 基于WAMS/SCADA混合量测的电网参数辨识与估计[J]. 电力系统自动化, 2008, 32(11):1-5. CHEN Xiaogang, YI Yonghui, JIANG Quanyuan, et al. Network parameter identification and estimation based on hybrid measurement for WAMS/SCADA[J]. Automation of Electric Power Systems, 2008, 32(5):1-5.
    [16] 周寅飞. 基于内点法和离散粒子群算法的输电网参数辨识[J]. 江苏电机工程, 2014, 33(1):22-25. ZHOU Yinfei. A hybrid strategy based on interior point method and DPSO for electricity transmission network parameter estimation[J]. Jiangsu Electrical Engineering, 2014, 33(1):22-25.
    [17] LIU Haoming, LIANG Yongxin, HE Kangle, et al. Parameter error identification method for multi-doubtful parameters of power grid[C]//Proceedings of IEEE Conference on CYBER Technology, Hong Kong:IEEE, 2014.
    [18] 周华峰, 谢国财, 胡亚平, 等. 基于动态分区的电网状态估计方法[J]. 广东电力, 2015, 28(2):70-75. ZHOU Huafeng, XIE Guocai, HU Yaping, et al. Power grid state estimation based on dynamic partition[J]. Guangdong Electric Power, 2015, 28(2):70-75.
    [19] 李碧君, 薛禹胜, 顾锦汶, 等. 基于权函数的电力系统状态估计算法[J]. 电力系统自动化, 1999, 23(8):32-34. LI Bijun, XUE Yusheng, GU Jinwen, et al. Weight function based power system state estimation algorithm[J]. Automation of Electric Power Systems, 1999, 23(8):32-34.
    [20] 李斌, 刘建坤, 李群, 等. 考虑决策风险的含UPFC多目标 最优潮流计算[J]. 电力工程技术, 2018, 37(1):19-25.
    LI Bin, LIU Jiankun, LI Qun, et al. Multi-objective optimal power flow calculation incorporating UPFC considering decision risk[J]. Electric Power Engineering Technology, 2018, 37(1):19-25.
    [21] 谢国财, 胡亚平, 周华峰, 等. 一种电网可疑参数诊断方法研究[J]. 南方电网技术, 2015, 9(1):94-98. XIE Guocai, HU Yaping, ZHOU Huafeng, et al. Research on diagnosis method for the doubtful parameter of power system[J]. Southern Power System Technology, 2015, 9(1):94-98.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:1402
  • PDF: 2077
  • HTML: 0
  • Cited by: 0
History
  • Received:November 15,2018
  • Revised:December 22,2018
  • Adopted:August 07,2018
  • Online: March 28,2019
  • Published: March 28,2019
Article QR Code