A Coordinated Charging Strategy for PEV Charging Stations Based on Mind Evolutionary Algorithm
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A large number of electri c vehicles connected to charging stations will increase the peak-valley difference and affect the safe and stable operation of the electric vehicle charging stations. Thus a coordinated charging strategy for plug-in electric vehicle (PEV) charging stations based on Mind Evolutionary Algorithm (MEA) is proposed. The strategy set minimum customer charging costs and minimum peak-valley difference as objective function. The optimal charging period of electric vehicles is calculated dynamically by using MEA. Customers decide whether or not to respond to peak-valley prices and to delay their charging to lower price periods by themselves. The charging coordination of electric vehicles is then realized. In order to verify the effectiveness of the proposed strategy, the Monte Carlo simulation method was utilized to generate the charging needs of customers based on actual customer charging behaviors. The distribution transformer load profiles, customer charging costs were simulated under uncoordinated and coordinated charging scenarios correspondingly. Simulation results indicate that under the proposed coordinated charging control strategy, customer charging costs can be greatly reduced and the peak shaving of distribution transformer loading profile can also be achieved; compared with genetic algorithm, the effect of MEA is better.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 10,2017
  • Revised:August 07,2017
  • Adopted:September 07,2017
  • Online: November 27,2017
  • Published:
Article QR Code