考虑季节特性与数据窗口的短期光伏功率预测组合模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM615

基金项目:

国家自然科学基金资助项目(52367006)


Short-term photovoltaic power prediction combination model considering seasonal characteristic and data window
Author:
Affiliation:

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    光伏功率的间歇性和随机性因季节变化呈现出不同的特点,考虑季节特性对提高光伏功率预测精度具有重要意义。因此,文中提出一种考虑季节特性和数据窗口的短期光伏功率预测组合模型。首先,通过皮尔逊相关系数法确定对光伏功率贡献度高的气象因素,降低预测模型的输入特征维数。其次,对比不同季节下不同模型的光伏功率预测精度,选择光伏功率预测误差最小且相关性最低的2个模型构建组合模型,即门控循环单元(gated recurrent unit,GRU)模型和极限梯度提升(extreme gradient boosting,XGboost)模型。然后,分析历史气象数据中不同输入窗口对GRU-XGboost模型预测精度的影响,确定最优数据窗口。最后,在此基础上分别采用GRU和XGboost对光伏功率进行预测,将2个预测结果加权组合得到最终预测结果。结果表明,与其他模型相比,所提模型具有更强的适应性和更高的预测精度。

    Abstract:

    The intermittency and randomness of photovoltaic power present different characteristics due to seasonal variations,so it is important to consider seasonal characteristics to improve the accuracy of photovoltaic power prediction. Therefore,a short-term photovoltaic power prediction combination model considering seasonal characteristic and data window is proposed in the paper. Firstly,the Pearson correlation coefficient method is adopted to determine suitable meteorological factors with high contribution to photovoltaic power and reduce the input feature dimensions of the prediction model. Secondly,the prediction error of different photovoltaic power models is compared,and the two models with the lowest photovoltaic power prediction error and the lowest correlation are selected to construct the combination model,i.e.,gated recurrent unit (GRU) model and extreme gradient boosting (XGboost) model. Thirdly,the effects of different input windows in the historical meteorological data on the prediction accuracy of GRU-XGboost model are analyzed to determine the optimal data window. Finally,on this basis,GRU and XGboost predict the photovoltaic power respectively. The final prediction is obtained by weighted combination of the two predictions. Simulation results show that the proposed model has stronger adaptability and higher prediction accuracy than other models.

    参考文献
    相似文献
    引证文献
引用本文

张静,熊国江.考虑季节特性与数据窗口的短期光伏功率预测组合模型[J].电力工程技术,2025,44(1):183-192

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-24
  • 最后修改日期:2024-09-05
  • 录用日期:2024-05-23
  • 在线发布日期: 2025-01-23
  • 出版日期: 2025-01-28
文章二维码