基于新型健康特征的锂电池健康状态快速估计方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM912

基金项目:

国家自然科学基金资助项目(52477101);教育部“春晖计划”合作科研项目(HZKY20220265)


Rapid estimation method of lithium battery state of health based on novel health feature
Author:
Affiliation:

Fund Project:

Ministry of Education

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    锂电池健康状态(state of health,SOH)的在线估计是锂电池管理系统中必不可少的一部分。大部分基于数据驱动的锂电池SOH估计方法由于计算量较大,难以在锂电池管理系统微控制器中在线使用。因此,文中提出基于新型健康特征的锂电池SOH快速估计方法。首先,分析锂电池的充电数据,基于已有的锂电池恒流充电过程的等压升时间(time interval of an equal charging voltage difference,TIECVD)健康特征,构建一个同充电电压起点、同充电时间间隔的健康特征。其次,文中提出基于新型健康特征和多元线性回归(multiple linear regression,MLR)的锂电池SOH快速估计方法。然后,通过对牛津锂电池老化数据集和美国国家航空航天局锂电池随机使用数据集进行分析,以0.01 V步长遍历恒流充电电压区间,以皮尔逊相关系数最大为目标,确定锂电池最优的起始电压。最后,考虑不同充电时间间隔,利用最小二乘(ordinary least squares,OLS)回归分析方法,确定锂电池最优充电时间间隔参数。使用2个数据集划分的训练集建立MLR模型,使用2个数据集划分的验证集对文中方法进行验证。实验结果表明,文中基于新型健康特征方法可极大缩减计算量,并且可以在保障预测精度的前提下实现锂电池SOH的快速估计。

    Abstract:

    The online estimation of the state of health (SOH) is an essential part of a lithium battery management system. Most data-driven lithium battery SOH estimation methods are computationally intensive and difficult to use in real-time in battery management system microcontrollers. Therefore,a rapid estimation method of lithium battery SOH based on novel health feature is proposed in this paper. The charging data of the battery is firstly analyzed in the method,and based on the existing health characteristics of time interval of an equal charging voltage difference (TIECVD) in the constant current charging process of the battery,constructs a new health feature,that is,the health feature of charging voltage at the same starting point and charging time interval. Then, a fast estimation method of lithium battery SOH based on the novel health feature and multiple linear regression (MLR) is proposed. Next,by analyzing the oxford battery aging dataset and the random usage dataset of lithium ion batteries used by NASA,the method traverses the constant current charging voltage range in steps of 0.01 V and determines the optimal starting voltage of the lithium battery by maximizing the Pearson correlation coefficient. Finally,considering different time intervals,the method uses the ordinary least squares (OLS) regression analysis method to determine the optimal time interval parameter of the lithium battery. The training set divided by two datasets is used to establish a multiple linear regression model,and the validation set divided by two datasets is used to verify the method. The experimental results show that the proposed method and novel health feature can greatly reduce the calculation volume,and can achieve fast estimation of lithium battery SOH while ensuring prediction accuracy.

    参考文献
    相似文献
    引证文献
引用本文

董晓红,董进波,王明深,曾飞,潘益.基于新型健康特征的锂电池健康状态快速估计方法[J].电力工程技术,2025,44(1):136-142,206

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-19
  • 最后修改日期:2024-07-28
  • 录用日期:2024-03-22
  • 在线发布日期: 2025-01-23
  • 出版日期: 2025-01-28
文章二维码