融合卷积神经网络和注意力机制的负荷识别方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM933

基金项目:

国家自然科学基金资助项目(52277104,51907084);云南省重点研发计划资助项目(202303AC100003)


Load recognition method based on convolutional neural network and attention mechanism
Author:
Affiliation:

Fund Project:

the National Natural Science Foundation of China (Grant No. 52277104), National Key R&D Program of Yunnan Province (202303AC100003), Yunnan provincial science and technology projects(YNKJXM20220173); Applied Basic Research Foundation of Yunnan Province (202301AT070455,202201AT0702)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对居民住宅进行非侵入式负荷监测(non-intrusive load monitoring,NILM)是智能电网用户需求侧的重要研究内容,居民负荷的能耗分析和用电管理是实现节能减排、可持续发展的关键环节。针对传统算法识别性能差、难以适应当下复杂用电环境的问题,文中从增强分类算法特征提取性能的优化思路出发,提出融合卷积神经网络(convolutional neural network,CNN)和自注意力机制的NILM负荷识别方法。首先,采集8种不同家用电器的电力数据,建立U-I轨迹曲线数据库;其次,采用挤压-激励网络(squeeze-and-excitation network,SENet)注意力机制提升CNN的特征聚合能力,完成对不同电器U-I轨迹曲线的特征提取和负荷识别;最后,对私有数据集和PLAID数据集进行测试,算例结果表明,所提方法在不同运行场景下均具有较高的识别准确率和较好的泛化性能。

    Abstract:

    Non-intrusive load monitoring (NILM) of residential houses is an important research content of the user demand side of smart grids,and the energy consumption analysis and power consumption management of residential loads are key steps in achieving energy conservation,emission reduction,and sustainable development. Aiming at the problems of poor recognition performance of traditional algorithms and difficulty in adapting to the current complex electricity environment,a NILM load recognition method integrating convolutional neural network (CNN)-self-attention mechanism is proposed from the optimization idea of enhancing the feature extraction performance of classification algorithms. Firstly,the power data of eight different household appliances are collected to establish a U-I trajectory curve database. Secondly,the feature aggregation ability of CNN is improved by using squeeze-and-excitation network (SENet) attention mechanism to complete the feature extraction and load identification of U-I trajectory curves of different electrical appliances. Finally,the private dataset and PLAID dataset are tested,and the example results show that the proposed method has high recognition accuracy and good generalization performance in different operational scenarios.

    参考文献
    相似文献
    引证文献
引用本文

赵毅涛,李钊,刘兴龙,骆钊,王钢,沈鑫.融合卷积神经网络和注意力机制的负荷识别方法[J].电力工程技术,2025,44(1):227-235

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-05
  • 最后修改日期:2024-07-29
  • 录用日期:2024-05-06
  • 在线发布日期: 2025-01-23
  • 出版日期: 2025-01-28
文章二维码