基于空间相关性与Stacking集成学习的风电功率预测方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM614

基金项目:

国家自然科学基金资助项目(U19A20106)


Wind power prediction method based on spatial correlation and Stacking ensemble learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目标气象预报数据缺失导致风电预测精度不足的问题,提出一种基于空间相关性和Stacking集成学习的风电功率预测方法。首先,分析目标风电场与相邻气象站点之间的空间相关性,根据相关系数极值点确定延迟时间,构建风速时移数据集;其次,利用Stacking集成方法融合多元算法,从多个数据观测角度预测目标风电场的风电功率,实现不同算法的优势互补,提升整体泛化能力,并采用粒子群优化算法搜索模型超参数,较好地平衡搜索时间与模型效果;最后,采用华东地区某风电场的实测数据验证了文中所提方法的有效性和准确性。结果表明,通过考虑不同位置的信息偏差,从数据输入和预测模型两方面可有效提高数据缺失情况下的风电预测精度。

    Abstract:

    Aiming at the problem of insufficient accuracy in wind power prediction caused by the lack of target meteorological forecast data,a wind power prediction method based on spatial correlation and Stacking ensemble learning is proposed in this paper. Firstly,the spatial correlation between the target wind farm and adjacent meteorological stations is analyzed. The delay time is determined based on the extreme points of the correlation coefficient,and a wind speed time-shift dataset is constructed. Secondly,the Stacking ensemble method is used to integrate multiple algorithms to predict the wind power of the target wind farm from multiple data observation perspectives. It leverages the complementary advantages of different algorithms,enhancing overall generalization ability. Additionally,it can effectively balance search time and model performance by adopting the particle swarm optimization algorithm to search for model hyperparameters. Finally,the effectiveness and accuracy of the proposed method have been verified by the measured data from a wind farm in East China. The results show that it can effectively improve the wind power prediction accuracy in the case of missing data by considering the information bias at different locations with the data input and prediction models.

    参考文献
    相似文献
    引证文献
引用本文

王小明,徐斌,尹元亚,潘文虎,吴红斌,韩屹.基于空间相关性与Stacking集成学习的风电功率预测方法[J].电力工程技术,2024,43(5):224-232

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-14
  • 最后修改日期:2024-06-25
  • 录用日期:2023-12-25
  • 在线发布日期: 2024-09-23
  • 出版日期: 2024-09-28
文章二维码