基于深度学习和无人机图像的架空线路缺陷巡检综述
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM726.3

基金项目:

国家自然科学基金资助项目(51977083);广东省自然科学基金资助项目(2022A1515011182)


Review of overhead line defect inspection based on deep learning and UAV images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    架空输电线路巡检是电网运维工作的一项重要内容,利用无人机进行线路巡视检测已成为运维人员完成电力巡检工作的重要手段。首先,文中概述无人机巡检任务中人机协同作业系统以及无人机智能自主作业系统的架构;其次,分析当前架空输电线路缺陷巡检领域数据集状况以及数据扩增技术;再次,综述基于深度学习的无人机图像缺陷检测典型方法以及评价指标,并对比总结各种方法的优缺点;然后,讨论无人机图像视觉检测方法中图像采集规范、数据集形式、缺陷检测算法专业化应用等对架空线路缺陷的检测效果,指出图像检测指标和类别定义在电力巡检专业化领域中的不足;最后,探讨基于深度学习的无人机图像缺陷巡检的未来发展方向。

    Abstract:

    Overhead transmission line inspection is an important task in power grid maintenance, and the utilization of unmanned aerial vehicles (UAVs) for line inspection has become a significant approach in power inspection operations. Firstly, the overview of the architecture of the human-machine collaborative operation system and the UAV intelligent autonomous operation system in UAV inspection tasks are provided. Next, the current status of datasets for defect inspection in overhead transmission lines is analyzed and the data augmentation techniques are discussed. Subsequently, this paper reviews typical deep learning-based methods for UAV image defect detection in detail, along with evaluation metrics. The advantages and limitations of various approaches are compared and summarized. Furthermore, the impact of image acquisition specifications, dataset formats, and specialized defect detection algorithms are discussed on the detection performance for overhead line defects in UAV image visual inspection methods. The shortcomings of image detection metrics and category definitions in the specialized field of power inspection are pointed out. Finally, future directions for deep learning-based UAV image defect detection tasks are explored.

    参考文献
    相似文献
    引证文献
引用本文

周文青,刘刚.基于深度学习和无人机图像的架空线路缺陷巡检综述[J].电力工程技术,2024,43(2):73-82

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-27
  • 最后修改日期:2023-12-02
  • 录用日期:2023-08-15
  • 在线发布日期: 2024-03-21
  • 出版日期: 2024-03-28
文章二维码