含多电解槽的新能源制氢能量管理优化
作者:
中图分类号:

TM73

基金项目:

国家自然科学基金资助项目(51977194)


Energy management optimization of new energy hydrogen production system including multi-electrolyzers
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    新能源制氢系统是提升风能、太阳能等新能源消纳的有效途径。目前国内外关于电解槽能量管理的研究以单电解槽为主。单电解槽能量管理未考虑电解槽非线性的工作特性,难以兼顾多个电解槽制氢效率,影响系统经济性。文中针对含有多电解槽的新能源制氢系统的能量管理问题进行了研究,以新能源消纳率、经济收益、制氢率为目标,考虑单个电解槽运行特性以及生产约束条件,建立包含风电、光伏、蓄电池、多电解槽的能量管理优化模型,并采用强度Pareto进化算法2(strength Pareto evolutionary algorithm 2,SPEA2)求解多目标优化问题。仿真研究表明,文中所提能量管理策略能够实现新能源发电的100%消纳,单位制氢收益可提升5.15%。因此,对多电解槽制氢系统进行有效的能量管理有助于提高制氢效率,可有效克服单电解槽运行及能量管理的不足。

    Abstract:

    The utilization of a new energy hydrogen production system is an effective approach to enhance the absorption capacity of renewable energies such as wind and solar power. The current research on energy management of electrolyzer, both domestically and internationally, primarily focuses on single-electrolyzer. The energy management of single-electrolyzer fails to account for the nonlinearity in its operational characteristics, thereby posing challenges in considering the hydrogen production efficiency of multi-electrolyzers and its impact on system economics. The present study focuses on the energy management of a novel hydrogen production system incorporating multi-electrolyzers. The energy management optimization model incorporates wind power, photovoltaic systems, batteries, and multiple electrolyzers to achieve targets for new energy consumption rate, economic income, and hydrogen production rate. Taking into account the operational characteristics of a single electrolyzer and production constraints, the multi-objective optimization problem is solved by strength Pareto evolutionary algorithm 2 (SPEA2). The simulation research demonstrates that the proposed energy management strategy can achieve a 100% absorption rate of newly generated power from renewable sources, while simultaneously increasing the hydrogen production efficiency per unit by 5.15%. The effective management of energy in a multi-electrolyzers hydrogen production system is crucial for enhancing the efficiency of hydrogen production and effectively addressing the limitations associated with single-electrolyzer operation and energy management.

    参考文献
    [1] 杨馥源, 田雪沁, 徐彤, 等. 面向碳中和电力系统转型的电氢枢纽灵活性应用[J]. 电力建设, 2021, 42(8):110-117. YANG Fuyuan, TIAN Xueqin, XU Tong, et al. Flexibility of electro-hydrogen hub for power system transformation under the goal of carbon neutrality[J]. Electric Power Construction, 2021, 42(8):110-117.
    [2] 滕越, 赵骞, 袁铁江, 等. 绿电-氢能-多域应用耦合网络关键技术现状及展望[J]. 发电技术, 2023, 44(3):318-330. TENG Yue, ZHAO Qian, YUAN Tiejiang, et al. Key technology status and outlook for green electricity-hydrogen energy-multi-domain applications coupled network[J]. Power Generation Technology, 2023, 44(3):318-330.
    [3] 张春雁, 窦真兰, 王俊, 等. 电解水制氢-储氢-供氢在电力系统中的发展路线[J]. 发电技术, 2023, 44(3):305-317. ZHANG Chunyan, DOU Zhenlan, WANG Jun, et al. Development route of hydrogen production by water electrolysis, hydrogen storage and hydrogen supply in power system[J]. Power Generation Technology, 2023, 44(3):305-317.
    [4] 李雪临, 袁凌. 海上风电制氢技术发展现状与建议[J]. 发电技术, 2022, 43(2):198-206. LI Xuelin, YUAN Ling. Development status and suggestions of hydrogen production technology by offshore wind power[J]. Power Generation Technology, 2022, 43(2):198-206.
    [5] CHI J, YU H M. Water electrolysis based on renewable energy for hydrogen production[J]. Chinese Journal of Catalysis, 2018, 39(3):390-394.
    [6] 章寒冰, 叶吉超, 胡鑫威, 等. 碱液制氢电解槽动态阻抗建模[J]. 浙江电力, 2023, 42(5):49-58. ZHANG Hanbing, YE Jichao, HU Xinwei, et al. Dynamic impedance modeling of an alkaline electrolyzer for hydrogen production[J]. Zhejiang Electric Power, 2023, 42(5):49-58.
    [7] 胡轶坤, 曹军文, 张文强, 等. 高温固体氧化物电解池应用研究进展[J]. 发电技术, 2023, 44(3):361-372. HU Yikun, CAO Junwen, ZHANG Wenqiang, et al. Application research progress of high temperature solid oxide electrolysis cell[J]. Power Generation Technology, 2023, 44(3):361-372.
    [8] HOSSEINI S E, WAHID M A. Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy[J]. International Journal of Energy Research, 2020, 44(6):4110-4131.
    [9] SARRIAS-MENA R, FERNÁNDEZ-RAMÍREZ L M, GARCÍA-VÁZQUEZ C A, et al. Electrolyzer models for hydrogen production from wind energy systems[J]. International Journal of Hydrogen Energy, 2015, 40(7):2927-2938.
    [10] 张焱, 郝振波, 朱振涛, 等. 海上风能岸上制氢的经济可行性分析[J]. 电力建设, 2023, 44(3):148-154. ZHANG Yan, HAO Zhenbo, ZHU Zhentao, et al. Economic feasibility analysis of onshore hydrogen production using offshore wind power[J]. Electric Power Construction, 2023, 44(3):148-154.
    [11] 牛萌, 肖宇, 刘锋, 等. 可再生能源接入对氢储能系统的影响及控制策略[J]. 电力建设, 2018, 39(4):28-34. NIU Meng, XIAO Yu, LIU Feng, et al. Influences of renewable energy on hydrogen storage system and its control strategy[J]. Electric Power Construction, 2018, 39(4):28-34.
    [12] 刘雨佳, 樊艳芳, 郝俊伟, 等. 基于碱性电解槽宽功率适应模型的风光氢热虚拟电厂容量配置与调度优化[J]. 电力系统保护与控制, 2022, 50(10):48-60. LIU Yujia, FAN Yanfang, HAO Junwei, et al. Capacity configuration and optimal scheduling of a wind-photovoltaic-hydrogen-thermal virtual power plant based on a wide range power adaptation strategy for an alkaline electrolyzer[J]. Power System Protection and Control, 2022, 50(10):48-60.
    [13] 陈锦洲, 林飞, 何洪文, 等. 质子交换膜燃料电池/电解槽系统建模及负荷追踪策略[J]. 电工技术学报, 2020, 35(S2):636-643. CHEN Jinzhou, LIN Fei, HE Hongwen, et al. Proton exchange membrane fuel cell/electrolyzer hybrid power system modeling and load tracking strategy[J]. Transactions of China Electrotechnical Society, 2020, 35(S2):636-643.
    [14] FANG R M. Multi-objective optimized operation of integrated energy system with hydrogen storage[J]. International Journal of Hydrogen Energy, 2019, 44(56):29409-29417.
    [15] GARCÍA P, TORREGLOSA J P, FERNÁNDEZ L M, et al. Improving long-term operation of power sources in off-grid hybrid systems based on renewable energy, hydrogen and battery[J]. Journal of Power Sources, 2014, 265:149-159.
    [16] CASTAÑEDA M, CANO A, JURADO F, et al. Sizing optimization, dynamic modeling and energy management strategies of a stand-alone PV/hydrogen/battery-based hybrid system[J]. International Journal of Hydrogen Energy, 2013, 38(10):3830-3845.
    [17] 刘海涛, 朱海南, 李丰硕, 等. 计及碳成本的电-气-热-氢综合能源系统经济运行策略[J]. 电力建设, 2021, 42(12):21-29. LIU Haitao, ZHU Hainan, LI Fengshuo, et al. Economic operation strategy of electric-gas-heat-hydrogen integrated energy system considering carbon cost[J]. Electric Power Construction, 2021, 42(12):21-29.
    [18] VIVAS F J, DE LAS HERAS A, SEGURA F, et al. A review of energy management strategies for renewable hybrid energy systems with hydrogen backup[J]. Renewable and Sustainable Energy Reviews, 2018, 82:126-155.
    [19] 魏繁荣, 随权, 林湘宁, 等. 考虑制氢设备效率特性的煤风氢能源网调度优化策略[J]. 中国电机工程学报, 2018, 38(5):1428-1439. WEI Fanrong, SUI Quan, LIN Xiangning, et al. Energy control scheduling optimization strategy for coal-wind-hydrogen energy grid under consideration of the efficiency features of hydrogen production equipment[J]. Proceedings of the CSEE, 2018, 38(5):1428-1439.
    [20] GARCÍA-TRIVIÑO P, FERNÁNDEZ-RAMÍREZ L M, GIL-MENA A J, et al. Optimized operation combining costs, efficiency and lifetime of a hybrid renewable energy system with energy storage by battery and hydrogen in grid-connected applications[J]. International Journal of Hydrogen Energy, 2016, 41(48):23132-23144.
    [21] 袁铁江, 万志, 王进君, 等. 考虑电解槽启停特性的制氢系统日前出力计划[J]. 中国电力, 2022, 55(1):101-109. YUAN Tiejiang, WAN Zhi, WANG Jinjun, et al. The day-ahead output plan of hydrogen production system considering the start-stop characteristics of electrolytic cell[J]. Electric Power, 2022, 55(1):101-109.
    [22] 沈小军, 聂聪颖, 吕洪. 计及电热特性的离网型风电制氢碱性电解槽阵列优化控制策略[J]. 电工技术学报, 2021, 36(3):463-472. SHEN Xiaojun, NIE Congying, LÜ Hong. Coordination control strategy of wind power-hydrogen alkaline electrolyzer bank considering electrothermal characteristics[J]. Transactions of China Electrotechnical Society, 2021, 36(3):463-472.
    [23] FANG R M, LIANG Y. Control strategy of electrolyzer in a wind-hydrogen system considering the constraints of switching times[J]. International Journal of Hydrogen Energy, 2019, 44(46):25104-25111.
    [24] 许建明, 王蔚, 陈廷彧, 等. 直流微网用风力发电机建模[J]. 长春工业大学学报, 2020, 41(6):581-586. XU Jianming, WANG Wei, CHEN Tingyu, et al. DC-microgrid wind turbine modeling[J]. Journal of Changchun University of Technology, 2020, 41(6):581-586.
    [25] 林洪, 袁红波. 光伏电池工作原理与物理建模方法分析[J]. 机电信息, 2020(36):3-4. LIN Hong, YUAN Hongbo. Analysis of working principle and physical modeling method of photovoltaic cells[J]. Mechanical and Electrical Information, 2020(36):3-4.
    [26] 陈兵, 徐瑞, 徐春雷, 等. 规模化储能分区聚合有功调度控制技术研究[J]. 电力工程技术, 2021, 40(3):35-41. CHEN Bing, XU Rui, XU Chunlei, et al. Large-scale energy storage aggregation active power dispatching and control in subarea division of power grid[J]. Electric Power Engineering Technology, 2021, 40(3):35-41.
    [27] EICHMAN J, HARRISON K, PETERS M. Novel electrolyzer applications:providing more than just hydrogen[R]. Office of Scientific and Technical Information (OSTI), 2014.
    [28] VARELA C, MOSTAFA M, ZONDERVAN E. Modeling alkaline water electrolysis for power-to-x applications:a scheduling approach[J]. International Journal of Hydrogen Energy, 2021, 46(14):9303-9313.
    [29] ZHENG Y, YOU S, BINDNER H W, et al. Optimal day-ahead dispatch of an alkaline electrolyser system concerning thermal-electric properties and state-transitional dynamics[J]. Applied Energy, 2022, 307:118091.
    [30] 江叶峰, 周海强, 罗建裕, 等. 计及源荷区间不确定性的电力系统日前优化调度[J]. 电力工程技术, 2022, 41(4):58-66. JIANG Yefeng, ZHOU Haiqiang, LUO Jianyu, et al. Day-ahead optimal dispatch of power system considering source and load interval uncertainties[J]. Electric Power Engineering Technology, 2022, 41(4):58-66.
    [31] 刘雨佳, 樊艳芳, 郝俊伟, 等. 基于碱性电解槽宽功率适应模型的风光氢热虚拟电厂容量配置与调度优化[J]. 电力系统保护与控制, 2022, 50(10):48-60. LIU Yujia, FAN Yanfang, HAO Junwei, et al. Capacity configuration and optimal scheduling of a wind-photovoltaic-hydrogen-thermal virtual power plant based on a wide range power adaptation strategy for an alkaline electrolyzer[J]. Power System Protection and Control, 2022, 50(10):48-60.
    [32] MOSTAPHA K H. Strength Pareto evolutionary algorithm 2(SPEA2) in MATLAB[CP/OL]. Yarpiz, 2015. https://yarpiz.com/74/ypea122-spea2.
    引证文献
引用本文

陈磊磊,年珩,赵建勇,范彩兄,周军,石生超.含多电解槽的新能源制氢能量管理优化[J].电力工程技术,2024,43(2):2-10

复制
分享
文章指标
  • 点击次数:561
  • 下载次数: 1707
  • HTML阅读次数: 1920
  • 引用次数: 0
历史
  • 收稿日期:2023-09-05
  • 最后修改日期:2023-11-20
  • 录用日期:2023-09-06
  • 在线发布日期: 2024-03-21
  • 出版日期: 2024-03-28
文章二维码