基于参比电极的析锂电池安全充电控制
作者:
中图分类号:

TM912

基金项目:

国家自然科学基金资助项目(52177217);北京市自然科学基金资助项目(3212031)


Charging performance of precipitating lithium batteries based on reference electrodes
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    电池系统是支撑下一代新型电网的关键,然而不合理的充放电策略会使电池发生析锂副反应,导致电池充放电性能大幅减弱。因此,文中针对三元锂离子电池,基于参比电极揭示了析锂后电池的充电性能变化情况,并对其安全充电电流进行控制。首先,设计不同温度下的充放电循环实验,得到低温循环与高温循环后的电池;其次,通过植入参比电极标定安全充电曲线对比电池的负极电位,发现高温循环后的电池发生了析锂,且平均充电电流相比新电池降低了61.7%;最后,对析锂后的电池建立安全充电荷电状态-温度-电流等高线图,对比新电池等高线图后发现,200 A以上的充电电流区域减少了69.84%。文中提供了一个析锂后电池充电性能衰减的量化指标,需要在实际的锂离子电池全寿命周期管理中予以考虑。

    Abstract:

    The battery system is the critical component to supporting the next generation of advanced power grids. However,parasitic lithium plating reactions can be triggered by improper charging and discharging strategies,leading to a significant compromise of the charge-discharge performance of batteries. Centered on ternary lithium-ion batteries,the degradation of charge performance due to lithium plating is elucidated through the utilization of a reference electrode-based approach in this study,followed by the implementation of measures to regulate safe charging currents. Diverse temperature-dependent charge-discharge cycling experiments are initially designed to evaluate batteries under both low-temperature and high-temperature cycling. Subsequently,the calibration of safe charging curves is conducted using a reference electrode,and the negative electrode potential of batteries undergoing high-temperature cycling is analyzed. The occurrence of lithium plating in batteries subjected to high-temperature cycling is identified,resulting in an average charging current reduction of 61.7% compared to pristine cells. Furthermore,a comprehensive charge state-temperature-current contour map is established for batteries with lithium plating. A reduction of 69.84% in the charging current region above 200 A is demonstrated through comparative analysis with the contour map of pristine batteries. A quantitative metric for assessing the degradation of charge performance in batteries with lithium plating is provided by this study,underscoring the necessity of considering these factors in the comprehensive lifecycle management of lithium-ion batteries.

    参考文献
    [1] QIAN G J,ZHENG Y J,LU Y F,et al. On-line equalization for lithium iron phosphate battery packs based on voltage threshold integral[J]. International Journal of Energy Research,2022,46(15):23244-23258.
    [2] 钱广俊,韩雪冰,卢兰光,等.锂离子电池系统均衡策略研究进展[J].机械工程学报,2022,58(24):145-162. QIAN Guangjun,HAN Xuebing,LU Languang,et al. Advances in lithium-ion battery system equalization strategy research[J]. Journal of Mechanical Engineering,2022,58(24):145-162.
    [3] 李相俊,刘晓宇,韩雪冰,等.电化学储能电站数字化智能化技术及其应用展望[J].供用电,2023,40(8):3-12. LI Xiangjun,LIU Xiaoyu,HAN Xuebing,et al. Digitalization and intelligence technologies of electrochemical energy storage stations and their application prospects[J]. Distribution & Utilization,2023,40(8):3-12.
    [4] 任东生,冯旭宁,韩雪冰,等.锂离子电池全生命周期安全性演变研究进展[J].储能科学与技术,2018,7(6):957-966. REN Dongsheng,FENG Xuning,HAN Xuebing,et al. Recent progress on evolution of safety performance of lithium-ion battery during aging process[J]. Energy Storage Science and Technology,2018,7(6):957-966.
    [5] HALES A,PROSSER R,BRAVO DIAZ L,et al. The cell cooling coefficient as a design tool to optimise thermal management of lithium-ion cells in battery packs[J]. eTransportation,2020,6:100089.
    [6] 费陈,赵亮,王云恪,等.基于XGBoost算法的锂离子电池健康状态估算[J].浙江电力,2022,41(5):14-21. FEI Chen,ZHAO Liang,WANG Yunke,et al. SOH estimation of Li-ion battery based on XGBoost algorithm[J]. Zhejiang Electric Power,2022,41(5):14-21.
    [7] 王宁,陈志强,刘明义,等.基于模糊综合评价的锂离子电池健康状态评估[J].发电技术,2022,43(5):784-791. WANG Ning,CHEN Zhiqiang,LIU Mingyi,et al. Health status assessment of lithium-ion battery based on fuzzy comprehensive evaluation[J]. Power Generation Technology,2022,43(5):784-791.
    [8] 马勇,李晓涵,孙磊,等.基于三维电化学热耦合析锂模型的锂离子电池参数设计[J].储能科学与技术,2022,11(8):2600-2611. MA Yong,LI Xiaohan,SUN Lei,et al. Parameter design of lithium-ion batteries based on a three-dimensional electrochemical thermal coupling lithium precipitation model[J]. Energy Storage Science and Technology,2022,11(8):2600-2611.
    [9] ZINTH V,VONLVDERS C,HOFMANN M,et al. Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction[J]. Journal of Power Sources,2014,271:152-159.
    [10] 牛志远,王怀铷,金阳,等.不同倍率下磷酸铁锂电池模组过充热失控特性研究[J].电力工程技术,2021,40(4):167-174. NIU Zhiyuan,WANG Huairu,JIN Yang,et al. Overcharging and runaway characteristics of lithium iron phosphate battery modules at different rates[J]. Electric Power Engineering Technology,2021,40(4):167-174.
    [11] KATZER F,DANZER M A. Analysis and detection of lithium deposition after fast charging of lithium-ion batteries by investigating the impedance relaxation[J]. Journal of Power Sources,2021,503:230009.
    [12] 孙涛,郑侠,郑岳久,等.基于电化学热耦合模型的锂离子电池快充控制[J].汽车工程,2022,44(4):495-504. SUN Tao,ZHENG Xia,ZHENG Yuejiu,et al. Fast charging control of lithium-ion batteries based on electrochemical-thermal coupling model[J]. Automotive Engineering,2022,44(4):495-504.
    [13] 夏向阳,邓子豪,张嘉诚,等.基于动力锂离子电池健康状态的全寿命周期优化充电策略[J].电力科学与技术学报,2022,37(6):17-24. XIA Xiangyang,DENG Zihao,ZHANG Jiacheng,et al. Life cycle optimal charging strategy based on the SOH of power lithium ion battery[J]. Journal of Electric Power Science and Technology,2022,37(6):17-24.
    [14] GAO Y Z,ZHANG X,GUO B J,et al. Health-aware multiobjective optimal charging strategy with coupled electrochemical-thermal-aging model for lithium-ion battery[J]. IEEE Transactions on Industrial Informatics,2020,16(5):3417-3429.
    [15] YOU H Z,DAI H F,LI L Z,et al. Charging strategy optimization at low temperatures for Li-ion batteries based on multi-factor coupling aging model[J]. IEEE Transactions on Vehicular Technology,2021,70(11):11433-11445.
    [16] 魏中宝,钟浩,何洪文.基于多物理过程约束的锂离子电池优化充电方法[J].机械工程学报,2023,59(2):223-232. WEI Zhongbao,ZHONG Hao,HE Hongwen. Multiphysics-constrained optimal charging of lithium-ion battery[J]. Journal of Mechanical Engineering,2023,59(2):223-232.
    [17] SUN J L,MA Q,TANG C Y,et al. Research on optimization of charging strategy control for aged batteries[J]. IEEE Transactions on Vehicular Technology,2020,69(12):14141-14149.
    [18] YANG B W,WANG D F,ZHANG B,et al. Aging diagnosis-oriented three-scale impedance model of lithium-ion battery inspired by and reflecting morphological evolution[J]. Journal of Energy Storage,2023,59:106357.
    [19] 葛昊.低温下抑制析锂的锂离子电池交流预热与快速充电方法[D].北京:清华大学,2017. GE Hao. Alternating current preheating and fast charging of lithium-ion batteries with lithium plating prevention at low temperatures[D]. Beijing:Tsinghua University,2017.
    [20] 钱健.快速充电:马斯三定律[J].蓄电池,1979,16(2):18-24. QIAN Jian. Fast charging-Mas's three laws[J]. Chinese Labat Man,1979,16(2):18-24.
    [21] ITURRONDOBEITIA A,AGUESSE F,GENIES S,et al. Post-mortem analysis of calendar-aged 16 Ah NMC/graphite pouch cells for EV application[J]. The Journal of Physical Chemistry C,2017,121(40):21865-21876.
    [22] MUSSA A S,LIIVAT A,MARZANO F,et al. Fast-charging effects on ageing for energy-optimized automotive LiNi1/3Mn1/3Co1/3O2/graphite prismatic lithium-ion cells[J]. Journal of Power Sources,2019,422:175-184.
    [23] 周旋,周萍,郑岳久,等.锂离子电池宽温度区间无析锂快充策略[J].汽车安全与节能学报,2020,11(3):397-405. ZHOU Xuan,ZHOU Ping,ZHENG Yuejiu,et al. Strategy of fast charging of lithium-ion batteries without lithium plating in a wide temperature range[J]. Journal of Automotive Safety and Energy,2020,11(3):397-405.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

钱广俊,汪宇,卢兰光,韩雪冰.基于参比电极的析锂电池安全充电控制[J].电力工程技术,2024,43(3):71-77

复制
分享
文章指标
  • 点击次数:196
  • 下载次数: 796
  • HTML阅读次数: 1076
  • 引用次数: 0
历史
  • 收稿日期:2023-12-20
  • 最后修改日期:2024-02-16
  • 录用日期:2023-10-23
  • 在线发布日期: 2024-05-23
  • 出版日期: 2024-05-28
文章二维码