集成型车载充电系统并网模式模型预测控制策略
作者:
中图分类号:

TM910.6;U469.72

基金项目:

国家自然科学基金资助项目(52077033)


Model predictive control strategy for grid-connected operation of integrated onboard charger system
Author:
Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    相较于传统车载充电系统,集成型车载充电系统(integrated onboard charger system,IOCS)在成本、功率密度等方面具备显著优势。文中基于六相永磁电驱系统设计了一台IOCS,并研究了模型预测电流控制(model predictive current control,MPCC)算法在该系统并网模式下的应用。首先,分析所提IOCS的电路拓扑并建立数学模型,同时介绍传统MPCC的实施流程。然后,针对传统MPCC计算量大、稳态性能差等不足,提出一种基于占空比优化的MPCC(MPCC based on duty cycle optimization,DCO-MPCC)策略。一方面,减少备选电压矢量数量,降低电流预测环节带来的计算负担;另一方面,提出一种占空比优化技术,改善系统稳态性能。最后,通过实验验证了所提算法的有效性与优越性。实验结果表明,DCO-MPCC策略能够显著提升系统稳态性能并减少算法计算量。充电与车网互动(vehicle to grid,V2G)工况下,网侧电流总谐波畸变(total harmonic distortion,THD)分别降低6.18%与5.92%,算法运行时间减少17.54 μs。

    Abstract:

    Comparing to traditional onboard chargers,integrated onboard charger system (IOCS) takes obvious merits in terms of cost and power density. In this paper,an IOCS based on a six-phase permanent magnet motor drive is designed,and model predictive current control (MPCC) methods are studied for the IOCS under the grid-connection modes. At first,the topology of the IOCS is analyzed and the mathematical model is established. Following this,the implementation of traditional MPCC is also introduced. Then,a MPCC based on duty cycle optimization (DCO-MPCC) is proposed to overcome the disadvantages of the traditional MPCC including high computation burden and bad steady-state performance. On the one hand,the computation burden is alleviated by reducing the number of the alternative voltage vectors. On the other hand,a duty cycle optimization technique is proposed to enhance the steady-state performance. Finally,the effectiveness and superiority of the proposed control strategy are verified using experiments. The experimental results indicate that the proposed control strategy can significantly enhance the steady-state performance of the system and reduce the computation burden. The total harmonic distortion (THD) of grid current is reduced by 6.18% and 5.92% under charging and vehicle to grid (V2G) operations,respectively. Meanwhile,the execution time of the proposed strategy is decreased by 17.54 μs.

    参考文献
    [1] KHALIGH A,DANTONIO M. Global trends in high-power on-board chargers for electric vehicles[J]. IEEE Transactions on Vehicular Technology,2019,68(4):3306-3324.
    [2] YUAN J Q,DORN-GOMBA L,CALLEGARO A D,et al. A review of bidirectional on-board chargers for electric vehicles[J]. IEEE Access,2021,9:51501-51518.
    [3] SHAHRIAR S,AL-ALI A R,OSMAN A H,et al. Machine learning approaches for EV charging behavior:a review[J]. IEEE Access,2020,8:168980-168993.
    [4] 张延宇,饶新朋,周书奎,等. 基于深度强化学习的电动汽车充电调度算法研究进展[J]. 电力系统保护与控制,2022,50(16):179-187. ZHANG Yanyu,RAO Xinpeng,ZHOU Shukui,et al. Research progress of electric vehicle charging scheduling algorithms based on deep reinforcement learning[J]. Power System Protection and Control,2022,50(16):179-187.
    [5] 姚芳,汤俊豪,陈盛华,等. 基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J]. 电力系统保护与控制,2023,51(16):158-167. YAO Fang,TANG Junhao,CHEN Shenghua,et al. Charging load prediction method for electric vehicles based on an ISSA-CNN-GRU model[J]. Power System Protection and Control,2023,51(16):158-167.
    [6] HOLTZ J. Predictive finite-state control—when to use and when not[J]. IEEE Transactions on Power Electronics,2022,37(4):4225-4232.
    [7] 齐昕,苏涛,周珂,等. 交流电机模型预测控制策略发展概述[J]. 中国电机工程学报,2021,41(18):6408-6419. QI Xin,SU Tao,ZHOU Ke,et al. Development of AC motor model predictive control strategy:an overview[J]. Proceedings of the CSEE,2021,41(18):6408-6419.
    [8] 姜哲,卜飞飞,潘子昊,等. 永磁同步电机伺服系统改进型无差拍电流控制算法[J]. 电力工程技术,2020,39(6):177-183. JIANG Zhe,BU Feifei,PAN Zihao,et al. Improved deadbeat current control algorithm for permanent magnet synchronous motor servo system[J]. Electric Power Engineering Technology,2020,39(6):177-183.
    [9] 韩华春,丁昊,黄地,等. 面向主动配电网的电动汽车充放电功率控制技术[J]. 电力工程技术,2017,36(4):8-13. HAN Huachun,DING Hao,HUANG Di,et al. Electric vehicle power control strategy for active distribution network[J]. Electric Power Engineering Technology,2017,36(4):8-13.
    [10] 黄天一,卞正达,徐长福,等. 基于碳化硅器件的无线充电系统电源设计[J]. 电力工程技术,2021,40(5):87-93. HUANG Tianyi,BIAN Zhengda,XU Changfu,et al. Design of transmitter power supply for wireless charging system based on SiC device[J]. Electric Power Engineering Technology,2021,40(5):87-93.
    [11] 王政豪,刘永慧,苏庆堂. 基于滑模控制的多区域V2G系统的负荷频率控制[J]. 控制工程,2022,29(11):1981-1988. WANG Zhenghao,LIU Yonghui,SU Qingtang. Load frequency control for multi-area V2G systems based on sliding mode control[J]. Control Engineering of China,2022,29(11):1981-1988.
    [12] 沙广林,刘璐,马春艳,等. 考虑车网互动的电动汽车有序充电策略[J]. 供用电,2023,40(10):46-54. SHA Guanglin,LIU Lu,MA Chunyan,et al. Orderly charging strategy for electric vehicles considering the vehicle-network interaction[J]. Distribution & Utilization,2023,40(10):46-54.
    [13] 肖丽,谢尧平,胡华锋,等. 基于V2G的电动汽车充放电双层优化调度策略[J]. 高压电器,2022,58(5):164-171. XIAO Li,XIE Yaoping,HU Huafeng,et al. Two-level optimization scheduling strategy for EV's charging and discharging based on V2G[J]. High Voltage Apparatus,2022,58(5):164-171.
    [14] LEVI E. Advances in converter control and innovative exploitation of additional degrees of freedom for multiphase machines[J]. IEEE Transactions on Industrial Electronics,2016,63(1):433-448.
    [15] SUBOTIC I,BODO N,LEVI E,et al. Overview of fast on-board integrated battery chargers for electric vehicles based on multiphase machines and power electronics[J]. IET Electric Power Applications,2016,10(3):217-229.
    [16] SUBOTIC I,JONES M,LEVI E. A fast on-board integrated battery charger for four-motor EVs[C]//2014 International Conference on Electrical Machines (ICEM). Berlin,Germany. IEEE,2014:2066-2072.
    [17] SUBOTIC I,BODO N,LEVI E. An EV drive-train with integrated fast charging capability[J]. IEEE Transactions on Power Electronics,2015,31(2):1461-1471.
    [18] TONG M H,CHENG M,WANG S S,et al. An on-board two-stage integrated fast battery charger for EVs based on a five-phase hybrid-excitation flux-switching machine[J]. IEEE Transactions on Industrial Electronics,2021,68(2):1780-1790.
    [19] XIAO Y,LIU C H,YU F. An effective charging-torque elimination method for six-phase integrated on-board EV chargers[J]. IEEE Transactions on Power Electronics,2020,35(3):2776-2786.
    [20] SUBOTIC I, BODO N, LEVI E. Integration of six-phase EV drivetrains into battery charging process with direct grid connection[J]. IEEE Transactions on Energy Conversion,2017,32(3):1012-1022.
    [21] LIU X,YU F,MAO J F,et al. Pre- and post-fault operations of six-phase electric-drive-reconstructed onboard charger for electric vehicles[J]. IEEE Transactions on Transportation Electrification,2022,8(2):1981-1993.
    [22] RAHERIMIHAJA H J,ZHANG Q F,XU G Q,et al. Integration of battery charging process for EVs into segmented three-phase motor drive with V2G-mode capability[J]. IEEE Transactions on Industrial Electronics,2021,68(4):2834-2844.
    [23] SUBOTIC I,BODO N,LEVI E,et al. Onboard integrated battery charger for EVs using an asymmetrical nine-phase machine[J]. IEEE Transactions on Industrial Electronics,2014,62(5):3285-3295.
    [24] YU F,ZHANG W,SHEN Y C,et al. A nine-phase permanent magnet electric-drive-reconstructed onboard charger for electric vehicle[J]. IEEE Transactions on Energy Conversion,2018,33(4):2091-2101.
    [25] 於锋,张蔚,刘春华,等. 电动汽车用电驱重构型充电系统及其关键技术综述[J]. 电力自动化设备,2018,38(12):16-24. YU Feng,ZHANG Wei,LIU Chunhua,et al. Overview of electric-drive-reconstructed charger system for electric vehicle and its key technology[J]. Electric Power Automation Equipment,2018,38(12):16-24.
    [26] 刘广思,肖先勇,刘建鑫. 无差拍优化T型三电平APF模型预测电流控制[J]. 电力工程技术,2019,38(5):78-84. LIU Guangsi,XIAO Xianyong,LIU Jianxin. Model predictive current control algorithm with deadbeat optimization for T-type three-level APF[J]. Electric Power Engineering Technology,2019,38(5):78-84.
    [27] 史倩芸,吴传申,高山. 考虑电动汽车需求响应的微电网预测控制研究[J]. 电力需求侧管理,2022,24(2):1-6,13. SHI Qianyun,WU Chuanshen,GAO Shan. Research on predictive control of microgrid considering electric vehicle demand response[J]. Power Demand Side Management,2022,24(2):1-6,13.
    [28] 蒋正荣,郝佳奇. 基于LESO的有源电力滤波器模型预测控制研究[J]. 电力电容器与无功补偿,2023,44(3):33-41. JIANG Zhengrong,HAO Jiaqi. Research on model predictive control of active power filter based on LESO[J]. Power Capacitor & Reactive Power Compensation,2023,44(3):33-41.
    [29] HABIB A,SHAWIER A,ABDEL-MAJEED M S,et al. Predictive current control of six-phase IM-based nonisolated integrated on-board battery charger under different winding configurations[J]. IEEE Transactions on Power Electronics,2022,37(7):8345-8358.
    [30] 谢鹰,钱科军,於锋,等. 电动汽车用V2G并网逆变器改进型MPC算法研究[J]. 电源学报,2022,20(4):37-46. XIE Ying,QIAN Kejun,YU Feng,et al. Research on improved MPC algorithm for grid-connected V2G inverter used in electric vehicles[J]. Journal of Power Supply,2022,20(4):37-46.
    [31] XIAO D,ALAM K S,NORAMBUENA M,et al. Modified modulated model predictive control strategy for a grid-connected converter[J]. IEEE Transactions on Industrial Electronics,2021,68(1):575-585.
    [32] ZHU R W,LISERRE M,CHEN Z,et al. Zero-sequence voltage modulation strategy for multiparallel converters circulating cur-rent suppression[J]. IEEE Transactions on Industrial Electronics,2017,64(3):1841-1852.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘兴,阳辉,王逸飞,陈涛,全相军.集成型车载充电系统并网模式模型预测控制策略[J].电力工程技术,2024,43(1):146-156

复制
分享
文章指标
  • 点击次数:277
  • 下载次数: 3888
  • HTML阅读次数: 1296
  • 引用次数: 0
历史
  • 收稿日期:2023-07-20
  • 最后修改日期:2023-10-12
  • 录用日期:2023-06-12
  • 在线发布日期: 2024-01-19
  • 出版日期: 2024-01-28
文章二维码