基于居民出行模拟的电动汽车负荷时空分布预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM73

基金项目:

国家重点研发计划资助项目(2021YFB2501600)


Prediction of spatio-temporal distribution of electric vehicle load based on residential travel simulation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对电动汽车充电负荷时空分布预测中的随机性、不确定性问题,文中提出一种结合出行链理论和实际地理信息的电动汽车充电负荷预测方法。基于路网融合及出行链理论,对电动汽车充电需求的时空特性建立模型,以此模拟用户的出行行为特性。同时,通过对目标区域的路网进行建模,按功能区进行划分,将出行链理论的用户行为特性与目标地理信息相结合,通过Floyd算法对电动汽车用户的出行路径进行规划设计,以预测电动汽车充电需求负荷。算例结果表明,所提出的模型能够基于实际地理信息,预测电动汽车充电负荷变化规律,分析不同功能区、不同行政区域下的电动汽车充电需求负荷特性。仿真结果验证了所提模型和方法的有效性。

    Abstract:

    Aiming at the randomness and uncertainty in the spatio-temporal distribution prediction of electric vehicle charging load,a method for electric vehicle load prediction that integrates travel chain theory and actual geographic information is proposed. On the basis of road network integration and travel chain theory,a model for the spatio-temporal characteristics of electric vehicle charging demand is established to simulate the user's travel behavior characteristics. At the same time,by modeling the road network in the target area,dividing it by functional area,combining the user behavior characteristics of travel chain theory with target geographic information,and planning and designing the travel path of electric vehicle users through Floyd algorithm,the electric vehicle charging demand load can be predicted. The results of the case study show that the proposed model can predict the variation of electric vehicle charging load based on actual geographic information,and analyze the charging demand and load characteristics of electric vehicles in different functional areas and different administrative regions. The simulation results validate the effectiveness of the proposed model and method.

    参考文献
    相似文献
    引证文献
引用本文

沈筱琦,方鑫,谭林林,李心果,孙佳启.基于居民出行模拟的电动汽车负荷时空分布预测[J].电力工程技术,2024,43(3):130-139

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-17
  • 最后修改日期:2024-02-05
  • 录用日期:2023-08-09
  • 在线发布日期: 2024-05-23
  • 出版日期: 2024-05-28
文章二维码