基于特征值指标的光伏并网系统静态电压稳定性
作者:
中图分类号:

TM712

基金项目:

国家自然科学基金资助项目(52077144)


Static voltage stability of photovoltaic grid-connected system based on eigenvalue index
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着可再生能源的持续发展,光伏电站呈规模化并网趋势,但光伏并网的无序发展会诱发光伏并网系统静态电压失稳问题。基于此,文中首先利用光伏的等效导纳构建光伏规模化并网系统的等效模型,将光伏并网对静态电压稳定性的影响量化为光伏等效导纳对导纳矩阵特征值的影响,得出导纳矩阵最小特征值减小会恶化光伏并网系统的静态电压稳定性的结论。随后,提出基于特征值-有功灵敏度的光伏并网系统静态电压稳定性评估指标,并且考虑导纳矩阵与光伏并网系统网络拓扑间的强相关关系,进一步分析网络拓扑对静态电压稳定性的影响,从交流和直流2个角度提出提升静态电压稳定性的光伏并网方案,得出合理改变输电网络拓扑能够提升光伏并网系统静态电压稳定性的结论。最后,基于IEEE 14节点系统算例验证了文中提出的特征值指标和光伏并网方案有利于保障光伏规模化并网系统的静态电压稳定性,推动光伏有序并网。

    Abstract:

    With the continuous development of renewable energy, photovoltaic power stations show a trend of large-scale grid connection, but the disorderly development of photovoltaic grid connection induces the static voltage instability in photovoltaic grid-connected system. Firstly, an equivalent model of photovoltaic large-scale grid-connected system using the equivalent admittance of photovoltaics is constructed in this paper, and the impact of photovoltaic grid-connected system on static voltage stability is quantified as the impact of photovoltaic equivalent admittance on the eigenvalue of the admittance matrix. It is concluded that the decrease of the minimum eigenvalue of the admittance matrix reduces the static voltage stability of photovoltaic grid-connected system. Further an evaluation index for static voltage stability of photovoltaic grid-connected system based on eigenvalue-active power sensitivity is proposed. Considering the strong correlation between the admittance matrix and the network topology of photovoltaic grid-connected system, the influence of the network topology on static voltage stability is analyzed. Photovoltaic grid-connected schemes which can improve the static voltage stability are proposed from AC and DC perspectives, and it is concluded that changing the topology of the transmission network reasonably can improve the static voltage stability of photovoltaic grid-connected system. Finally, based on a IEEE 14-node system example, the eigenvalue index and the photovoltaic grid-connected scheme proposed in this paper is validated to ensure the static voltage stability of large-scale photovoltaic grid-connected systems and promote orderly grid connection of photovoltaic system.

    参考文献
    [1] 喻小宝, 郑丹丹, 杨康, 等. "双碳"目标下能源电力行业的机遇与挑战[J]. 华电技术, 2021, 43(6):21-32. YU Xiaobao, ZHENG Dandan, YANG Kang, et al. Opportunities and challenges faced by energy and power industry with the goal of carbon neutrality and carbon peak[J]. Huadian Technology, 2021, 43(6):21-32.
    [2] 董昱, 梁志峰, 王上行, 等. 新型电力系统下推动储能与新能源协调有序发展的分析与思考[J]. 供用电, 2022, 39(10):84-92. DONG Yu, LIANG Zhifeng, WANG Shangxing, et al. Analysis and thinking on promoting coordinated and orderly development of energy storage and new energy under new power system[J]. Distribution & Utilization, 2022, 39(10):84-92.
    [3] TAN Y T, KIRSCHEN D S. Impact on the power system of a large penetration of photovoltaic generation[C]//2007 IEEE Power Engineering Society General Meeting. Tampa, FL, USA. IEEE, 2007:1-8.
    [4] 宋建平, 王颖, 许寅. 光伏接入配电网的优化策略研究及影响分析[J]. 供用电, 2022, 39(5):25-32. SONG Jianping, WANG Ying, XU Yin. Research on optimization strategy andimpact analysis of photovoltaic generation integrated to distribution network[J]. Distribution & Utilization, 2022, 39(5):25-32.
    [5] LIU Y, BEBIC J, KROPOSKI B, et al. Distribution system voltage performance analysis for high-penetration PV[C]//2008 IEEE Energy 2030 Conference. Atlanta, GA, USA. IEEE, 2009:1-8.
    [6] 肖峰. 超高比例新能源汇集与外送拓扑及控制研究[D]. 北京:华北电力大学, 2021. XIAO Feng. Research on topology and control strategy of ultra high proportion new energy collection and delivery[D]. Beijing:North China Electric Power University, 2021.
    [7] DU Y, SU J H, MAO M Q, et al. Autonomous controller based on synchronous generator dq0 model for micro grid inverters[C]//8th International Conference on Power Electronics-ECCE Asia. Jeju, Korea (South). IEEE, 2011:2645-2649.
    [8] 祁万春, 王荃荃, 陈庆珠, 等. 计及电压稳定的含高比例光伏电源电网FACTS优化配置[J]. 可再生能源, 2019, 37(12):1786-1793. QI Wanchun, WANG Quanquan, CHEN Qingzhu, et al. FACTS optimal configuration of high proportion photovoltaic power grid considering voltage stability[J]. Renewable Energy Resources, 2019, 37(12):1786-1793.
    [9] 刘轶, 王景钢. 大型光伏电站并网暂态特性研究[J]. 电力系统保护与控制, 2021, 49(7):182-187. LIU Yi, WANG Jinggang. Analysis of transient characteristics when large-scale photovoltaics are connected to a power system[J]. Power System Protection and Control, 2021, 49(7):182-187.
    [10] 杜潇, 周林, 郭珂, 等. 大型光伏电站静态电压稳定性分析[J]. 电网技术, 2015, 39(12):3427-3434. DU Xiao, ZHOU Lin, GUO Ke, et al. Static voltage stability analysis of large-scale photovoltaic plants[J]. Power System Technology, 2015, 39(12):3427-3434.
    [11] 孔贺, 李业成, 张哲, 等. 阻抗模裕度指标在新能源多馈入系统静态电压稳定评估的适应性分析[J/OL]. 中国电机工程学报:1-16[2023-08-23]. http://kns.cnki.net/kcms/detail/11.2107.TM.20221223.0920.002.html. KONG He, LI Yecheng, ZHANG Zhe. Adaptability analysis of impedance modulus margin index in static voltage stability evaluation of multi-infeed renewable energy power system[J/OL].Proceedings of the CSEE:1-16[2023-08-23]. http://kns.cnki.net/kcms/detail/11.2107.TM. 20221223.0920.002.html.
    [12] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9):171-191. ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9):171-191.
    [13] LAMMERT G, PREMM D, OSPINA L D P, et al. Control of photovoltaic systems for enhanced short-term voltage stability and recovery[J]. IEEE Transactions on Energy Conversion, 2019, 34(1):243-254.
    [14] 金楚, 黎嘉明, 徐沈智, 等. 大规模光伏发电并网概率潮流计算及对电网的影响[J]. 电力工程技术, 2017, 36(1):1-8. JIN Chu, LI Jiaming, XU Shenzhi, et al. Probabilistic load flow calculation and influence analysis for power grid connected with large scale photovoltaic generation system[J]. Electric Power Engineering Technology, 2017, 36(1):1-8.
    [15] MUNKHCHULUUN E, MEEGAHAPOLA L. Impact of the solar photovoltaic (PV) generation on long-term voltage stability of a power network[C]//2017 IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia). Auckland, New Zealand. IEEE, 2018:1-6.
    [16] 党存禄, 尚广广, 魏金花. 基于特征结构分析法的风电系统静态电压稳定分析[J]. 电测与仪表, 2015, 52(15):120-123. DANG Cunlu, SHANG Guangguang, WEI Jinhua. Static voltage stability study of wind power system based on eigenvalue structure analysis method[J]. Electrical Measurement & Instrumentation, 2015, 52(15):120-123.
    [17] 李培强, 王继飞, 唐捷, 等. 基于模态分析的双馈机组对电压稳定性的影响[J]. 电力系统及其自动化学报, 2016, 28(4):18-24. LI Peiqiang, WANG Jifei, TANG Jie, et al. Study on static voltage stability of system including DFIGs based on modal analysis[J]. Proceedings of the CSU-EPSA, 2016, 28(4):18-24.
    [18] 张谦, 廖清芬, 唐飞, 等. 计及分布式电源接入的配电网静态电压稳定性评估方法[J]. 电力系统自动化, 2015, 39(15):42-48. ZHANG Qian, LIAO Qingfen, TANG Fei, et al. Steady state voltage stability assessment method of distribution network considering inter-connection of distributed generators[J]. Automation of Electric Power Systems, 2015, 39(15):42-48.
    [19] 刘运鑫, 姚良忠, 廖思阳, 等. 光伏渗透率对电力系统静态电压稳定性影响研究[J]. 中国电机工程学报, 2022, 42(15):5484-5497. LIU Yunxin, YAO Liangzhong, LIAO Siyang, et al. Study on the impact of photovoltaic penetration on power system static voltage stability[J]. Proceedings of the CSEE, 2022, 42(15):5484-5497.
    [20] 易俊, 林伟芳, 余芳芳, 等. 受静态电压稳定约束的新能源临界渗透率计算方法[J]. 电网技术, 2020, 44(8):2906-2912. YI Jun, LIN Weifang, YU Fangfang, et al. Calculation method of critical penetration of renewable energy constrained by static voltage stability[J]. Power System Technology, 2020, 44(8):2906-2912.
    [21] WANG Y Q, LI Z M, LU F. Research on the impact of wind power integration on power system voltage stability[C]//2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia). Chengdu, China. IEEE, 2019:1683-1687.
    [22] 陈超. 基于广义Tellegen定理的电网结构静态电压稳定性研究[D]. 锦州:辽宁工业大学, 2016. CHEN Chao. Research on static voltage stability of grid structure based on generalized Tellegen's theorem[D]. Jinzhou:Liaoning University of Technology, 2016.
    [23] 吴倩红, 韩蓓, 李国杰, 等. 极高光伏渗透率下基于潮流雅可比矩阵和卷积神经网络的静态电压稳定在线预测[J]. 中国电机工程学报, 2021, 41(12):4058-4068. WU Qianhong, HAN Bei, LI Guojie, et al. Power flow Jacobian matrix based static voltage stability forecast by CNN considering extremely high PV penetration[J]. Proceedings of the CSEE, 2021, 41(12):4058-4068.
    [24] 高大鹏. 电网"虚短、虚断"现象与静态电压稳定性的研究[D]. 锦州:辽宁工业大学, 2014. GAO Dapeng. Research on the phenomenon of ‘virtual-short and virtual-cut off’ and static voltage stability in power system[D]. Jinzhou:Liaoning University of Technology, 2014.
    [25] 郑亮, 马道广, 周霞, 等. 计及SSSC的高渗透率新能源电网静态电压稳定特征研究[J]. 电力需求侧管理, 2022, 24(6):50-56. ZHENG Liang, MA Daoguang, ZHOU Xia, et al. Static voltage stability characteristics of high permeability new energy grid considering SSSC[J]. Power Demand Side Management, 2022, 24(6):50-56.
    [26] 孟祥飞. 基于机器学习的电力系统静态电压稳定评估及实时经济调度研究[D]. 北京:北京交通大学, 2021. MENG Xiangfei. Research on power system static voltage stability assessment and real-time economic dispatch based on machine learning[D]. Beijing:Beijing Jiaotong University, 2021.
    [27] 赵伟然, 汪海蛟, 李光辉, 等. 分布式光伏并网电压和功率因数协调控制策略[J]. 电力工程技术, 2017, 36(6):20-26. ZHAO Weiran, WANG Haijiao, LI Guanghui, et al. Voltage and power factor coordination control for distributed photovoltaic integration[J]. Electric Power Engineering Technology, 2017, 36(6):20-26.
    [28] 徐成司, 王子翰, 董树锋, 等. 基于潮流雅可比行列式的静态电压稳定分析[J]. 中国电机工程学报, 2022, 42(6):2096-2109. XU Chengsi, WANG Zihan, DONG Shufeng, et al. Static voltage stability analysis based on power flow Jacobian determinant[J]. Proceedings of the CSEE, 2022, 42(6):2096-2109.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姚竞宙,付强,杜文娟,杨佳.基于特征值指标的光伏并网系统静态电压稳定性[J].电力工程技术,2023,42(6):32-41,140

复制
分享
文章指标
  • 点击次数:282
  • 下载次数: 1162
  • HTML阅读次数: 1293
  • 引用次数: 0
历史
  • 收稿日期:2023-06-02
  • 最后修改日期:2023-08-25
  • 录用日期:2023-05-25
  • 在线发布日期: 2023-11-23
  • 出版日期: 2023-11-28
文章二维码