一种适用于大型光伏电站的新型备自投方案
作者:
中图分类号:

TM771

基金项目:

国家自然科学基金资助项目(52177108)


A new backup automatic switch scheme for large-scale photovoltaic power stations
Author:
Fund Project:

National Natural Science Foundation of China (52177108), Research on the protection principle and fault recovery technology of double weak feed line of isolated island wind farm integrated into flexible power grid, Tianjin University, Li Botong; State Grid Ningxia Electric Power Co., Ltd. Science and Technology Project Unsolved New Energy Terminal Station Rapid Preparation Self-investment Technology Research(5229NX220003)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着大规模光伏接入电网,备用电源自动投入装置(简称“备自投”)的传统投入策略将受到影响:电网出现故障时,由于光伏电源的存在,故障处母线电压无法满足检“无压”判据,传统备自投不能正确动作。为提高新能源利用率并保证在不解列光伏电源的前提下实现备自投正常动作,文中提出一种基于分布式缓冲电阻的新型备自投方案。首先,重点分析光伏出力与负荷功率不匹配程度对并网点电压的影响;其次,在各光伏发电单元直流电容两端并联分布式缓冲电阻支路,利用缓冲电阻平抑主供电源断开后(备自投动作前)形成孤岛状态下的功率不均衡,实现在不解列光伏电源的前提下备自投安全快速动作;最后,针对光伏与负荷功率极不匹配场景,利用MATLAB/Si ̄mu ̄link进行仿真验证,备用电源投入时冲击电流可限制在1.5倍额定电流内,符合相关规范要求,验证了所提新型备自投方案的可行性及有效性。

    Abstract:

    With the integration of large-scale photovoltaic power stations into power grids, the traditional strategy of the backup automatic switch is affected. When a grid fault occurs, due to the existence of photovoltaic power sources, the busbar voltage at the fault point cannot meet the ‘no voltage’ criterion, and the traditional strategy cannot operate correctly. In order to improve new energy utilization and ensure normal input of the backup power supply without disconnecting photovoltaic power sources, a new backup automatic switch scheme based on distributed buffer resistors is proposed. Firstly, the influence of the mismatch between photovoltaic output and load power on the grid-connected point voltage is analyzed. Secondly, distributed buffer resistor branches are connected in parallel at both ends of the DC capacitor in each photovoltaic power generation unit, using buffer resistors to suppress the power imbalance formed in the islanded state after the main power supply is disconnected (before the backup automatic switch operates), realizing safe and fast operation of the backup automatic switch. Finally, MATLAB/Simulink is used to simulate and verify the scenario of extreme mismatch between photovoltaic and load power, and the inrush current can be limited to 1.5 times rated current, which meets the relevant specifications and verifies the feasibility and effectiveness of the proposed new backup automatic switch scheme.

    参考文献
    [1] 刘永奇, 陈龙翔, 韩小琪. 能源转型下我国新能源替代的关键问题分析[J]. 中国电机工程学报, 2022, 42(2):515-524. LIU Yongqi, CHEN Longxiang, HAN Xiaoqi. The key problem analysis on the alternative new energy under the energy transition[J]. Proceedings of the CSEE, 2022, 42(2):515-524.
    [2] 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18):6245-6259. LI Hui, LIU Dong, YAO Danyang. Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18):6245-6259.
    [3] 王守相, 赵倩宇. 新型电力系统下提升可再生能源接纳能力[J]. 供用电, 2022, 39(5):2, 1. WANG Shouxiang, ZHAO Qianyu. Improving the acceptability of renewable energy under the new power system[J]. Distribution & Utilization, 2022, 39(5):2, 1.
    [4] 吴晓刚, 唐家俊, 吴新华, 等. "双碳"目标下虚拟电厂关键技术与建设现状[J]. 浙江电力, 2022, 41(10):64-71. WU Xiaogang, TANG Jiajun, WU Xinhua, et al. Key technologies and present situation of virtual power plant under "dual-carbon" goals[J]. Zhejiang Electric Power, 2022, 41(10):64-71.
    [5] 张笑弟, 高强, 潘弘. "双碳"目标下新型配电系统功能形态及规划体系[J]. 电力系统及其自动化学报, 2022, 34(5):96-101. ZHANG Xiaodi, GAO Qiang, PAN Hong. Function, form and planning system of novel power distribution system with "double-carbon" goal[J]. Proceedings of the CSU-EPSA, 2022, 34(5):96-101.
    [6] 任冲, 柯贤波, 王吉利, 等. 高比例新能源电网新能源功率优化分配方法[J]. 电力工程技术, 2022, 41(3):110-117. REN Chong, KE Xianbo, WANG Jili, et al. New energy power optimal distribution method for high proportion new energy power grid[J]. Electric Power Engineering Technology, 2022, 41(3):110-117.
    [7] 张金平, 汪宁渤, 黄蓉, 等. 高渗透率光伏参与电力系统调频研究综述[J]. 电力系统保护与控制, 2019, 47(15):179-186. ZHANG Jinping, WANG Ningbo, HUANG Rong, et al. Survey on frequency regulation technology of power grid by high-penetration photovoltaic[J]. Power System Protection and Control, 2019, 47(15):179-186.
    [8] 万灿. 高比例可再生能源电力系统分析与调控[J]. 电力工程技术, 2021, 40(2):1. WAN Can. Analysis and regulation of high proportion renewable energy power system[J]. Electric Power Engineering Technology, 2021, 40(2):1.
    [9] 李琳, 冀鲁豫, 张一驰, 等. 巴基斯坦"1·9"大停电事故初步分析及启示[J]. 电网技术, 2022, 46(2):655-663. LI Lin, JI Luyu, ZHANG Yichi, et al. Preliminary analysis and lessons of blackout in Pakistan power grid on January 9, 2021[J]. Power System Technology, 2022, 46(2):655-663.
    [10] 吴界辰, 汪莹, 易海琼, 等. 中国台湾"3·3"大规模停电事故分析及其对未来电网发展的启示[J]. 电力建设, 2022, 43(7):73-79. WU Jiechen, WANG Ying, YI Haiqiong, et al. Analysis of the power outage in Taiwan, China on March 3, 2022 and its implications for future power grid development[J]. Electric Power Construction, 2022, 43(7):73-79.
    [11] 金公羽. 广域备自投原理及其动作策略研究[D]. 杭州:浙江大学, 2021. JIN Gongyu. Research on wide-area backup auto-switching technology and its transfer strategy[D]. Hangzhou:Zhejiang University, 2021.
    [12] 陈晓龙. 适应分布式电源接入的配电网保护与控制技术研究[D]. 天津:天津大学, 2015. CHEN Xiaolong. Research on protection and control technology for distribution network with the distributed generation[D]. Tianjin:Tianjin University, 2015.
    [13] 沈政, 金震. 大型数据中心备自投装置的设计[J]. 浙江电力, 2022, 41(11):39-45. SHEN Zheng, JIN Zhen. Design of the BATS for a large data center[J]. Zhejiang Electric Power, 2022, 41(11):39-45.
    [14] 李世群, 徐峰, 袁淼, 等. 柔性直流换流站备自投误动分析及优化[J]. 供用电, 2021, 38(9):89-95. LI Shiqun, XU Feng, YUAN Miao, et al. Analysis and optimization of standby automatic switching maloperation in flexible DC converter station[J]. Distribution & Utilization, 2021, 38(9):89-95.
    [15] 彭生江, 陆军, 张中丹, 等. 光伏接入对电网的影响研究[J]. 电力系统保护与控制, 2021, 49(5):157-164. PENG Shengjiang, LU Jun, ZHANG Zhongdan, et al. Research on the influence of photovoltaic access on a power grid[J]. Power System Protection and Control, 2021, 49(5):157-164.
    [16] 丁明, 王伟胜, 王秀丽, 等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报, 2014, 34(1):1-14. DING Ming, WANG Weisheng, WANG Xiuli, et al. A review on the effect of large-scale PV generation on power systems[J]. Proceedings of the CSEE, 2014, 34(1):1-14.
    [17] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9):171-191. ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9):171-191.
    [18] 郑涛, 王洪炳, 于晓军, 等. 适应于新能源接入的新型备自投方案[J]. 电网技术, 2022, 46(11):4296-4304. ZHENG Tao, WANG Hongbing, YU Xiaojun, et al. New busbar automatics transfer switch scheme for new energy access[J]. Power System Technology, 2022, 46(11):4296-4304.
    [19] 李乃永, 林霞, 李磊, 等. 考虑分布式电源特性的配电网保护与安全自动装置配合方案[J]. 电力系统自动化, 2014, 38(19):85-89. LI Naiyong, LIN Xia, LI Lei, et al. Coordinated scheme of distribution network protection and automatic devices considering DG characteristics[J]. Automation of Electric Power Systems, 2014, 38(19):85-89.
    [20] 许航. 含DG的变电站备用电源投切控制的相关问题的研究[D]. 合肥:合肥工业大学, 2010. XU Hang. Research on the problem relating to automatic bus transfer of substation with DG connected[D]. Hefei:Hefei University of Technology, 2010.
    [21] 冀婉舒. 考虑分布式电源接入的链式网络区域备自投控制方法研究[D]. 西安:西安理工大学, 2018. JI Wanshu. Research on regional automatic bus transfer control method for regional power grid considering distributed power[D]. Xi'an:Xi'an University of Technology, 2018.
    [22] 陈小龙. 110 kV变电站远方备自投的应用研究[D]. 北京:华北电力大学, 2016. CHEN Xiaolong. Research on the application of the 110 kV substation remote backup[D]. Beijing:North China Electric Power University, 2016.
    [23] 陈志峰, 沈娜, 王玕, 等. 高渗透率水电接入的变电站备自投逻辑优化研究[J]. 电力系统保护与控制, 2023, 51(4):157-164. CHEN Zhifeng, SHEN Na, WANG Gan, et al. Logic optimization of a transformer substation busbar automatic transfer switch with high penetration of hydropower[J]. Power System Protection and Control, 2023, 51(4):157-164.
    [24] 姜惠兰, 薛静玮, 李天鹏, 等. 含风电场电网的备用电源快速投切方式及其整定方法[J]. 高电压技术, 2016, 42(9):2768-2774. JIANG Huilan, XUE Jingwei, LI Tianpeng, et al. Fast transfer mode and its tuning method for emergency power supply of grid connected with wind turbine[J]. High Voltage Engineering, 2016, 42(9):2768-2774.
    [25] 毛宇晗. 多电压等级配电网备用电源自动投入装置配置及投入策略优化方法研究[D]. 上海:上海交通大学, 2019. MAO Yuhan. Research on optimization method of configuration and control strategy for busbar automatic transfer switch in multi-voltage level distribution network[D]. Shanghai:Shanghai Jiao Tong University, 2019.
    [26] 肖文浩, 彭卉, 刘兴栋, 等. 一种基于柔性装置的配电网网架结构设计与研究[J]. 电力电容器与无功补偿, 2022, 43(5):109-117. XIAO Wenhao, PENG Hui, LIU Xingdong, et al. Design and research of distribution network structure based on flexible device[J]. Power Capacitor & Reactive Power Compensation, 2022, 43(5):109-117.
    [27] 牟杰, 杨依睿, 徐永海, 等. 接入电力电子变压器的光伏及混合储能协调控制策略研究[J]. 电力电容器与无功补偿, 2022, 43(3):143-152. MU Jie, YANG Yirui, XU Yonghai, et al. Research on coordinated control strategy of photovoltaic and hybrid energy storage system connected to power electronic transformer[J]. Power Capacitor & Reactive Power Compensation, 2022, 43(3):143-152.
    [28] 陈志峰, 吴勇, 金滇黔. 考虑山区小水电的智能型备自投装置的研究[J]. 电力系统保护与控制, 2010, 38(8):120-122, 127. CHEN Zhifeng, WU Yong, JIN Dianqian. Research on intelligent automatic bus transfer equipment suitable for the small hydroelectric power system in mountainous area[J]. Power System Protection and Control, 2010, 38(8):120-122, 127.
    [29] 郑涛, 王燕萍, 袁飞, 等. 基于工频突变量阻抗测量的新型孤岛检测方法[J]. 电力自动化设备, 2016, 36(5):8-13. ZHENG Tao, WANG Yanping, YUAN Fei, et al. Islanding detection based on power-frequency variation impedance[J]. Electric Power Automation Equipment, 2016, 36(5):8-13.
    [30] 杨仁炘, 王霄鹤, 陈晴, 等. 机组协同-分布卸荷的风电场-柔直并网系统故障穿越方法[J]. 电力系统自动化, 2021, 45(21):103-111. YANG Renxin, WANG Xiaohe, CHEN Qing, et al. Fault ride-through method of flexible HVDC transmission system for wind farm integration based on coordination of wind turbines and distributed braking resistors[J]. Automation of Electric Power Systems, 2021, 45(21):103-111.
    [31] CAO S, XIANG W, LU X J, et al. Energy dissipation of MMC-HVDC based onshore wind power integration system with FB-DBS and DCCB[J]. IET Renewable Power Generation, 2020, 14(2):222-230.
    [32] 许彬, 高冲, 张静. 应用于海上风电接入的VSC-HVDC系统主网侧交流故障穿越的新型直流耗能装置拓扑[J]. 中国电机工程学报, 2021, 41(1):88-97, 400. XU Bin, GAO Chong, ZHANG Jing. A novel DC chopper topology for grid side fault ride through in VSC-HVDC based offshore wind power connection[J]. Proceedings of the CSEE, 2021, 41(1):88-97, 400.
    [33] 国家电网有限公司. 分布式电源接入配电网设计规范:Q/GDW 11147-2017[S]. 2018. State Grid Corporation of China. Design specification for distributed power access to distribution network:Q/GDW 11147-2017[S]. 2018.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蔡乾,于晓军,吴建云,于小艳,罗美玲,李博通.一种适用于大型光伏电站的新型备自投方案[J].电力工程技术,2023,42(6):91-99

复制
分享
文章指标
  • 点击次数:317
  • 下载次数: 1102
  • HTML阅读次数: 1172
  • 引用次数: 0
历史
  • 收稿日期:2023-05-29
  • 最后修改日期:2023-07-17
  • 录用日期:2023-05-30
  • 在线发布日期: 2023-11-23
  • 出版日期: 2023-11-28
文章二维码