基于多目标协同训练的风电功率预测提升算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM641

基金项目:

国家自然科学基金资助项目(51977194)


Wind power prediction and improvement algorithm based on multi-objective collaborative training
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    “双碳”目标下,电力系统加速转型,风电预测技术对构建高比例新能源的新型电力系统具有重要意义。为提升风电功率预测的准确性和鲁棒性,文中提出一种基于多目标协同训练的数值天气预报(numerical weather predicition,NWP)隐式校正算法。首先,分析了NWP校正的必要性和基于NWP显式校正的二步预测法存在的问题;然后,针对二步预测法存在的问题,基于多目标协同训练的优化方式利用神经网络进行NWP隐式校正,以端到端的方式训练模型,同时实现NWP隐式校正和风电功率预测的功能。结合某风电场实测数据开展具体算例分析,证明了所提算法对短期及中长期风电功率预测均有提升作用。此外,该算法仅需1个网络且避免了二次计算,节省了计算存储成本。

    Abstract:

    Under the ‘dual carbon’ goal, the transformation of the power system is accelerating, and wind power prediction technology is of great significance to the construction of a new power system with a high proportion of new energy. In order to improve the accuracy and robustness of wind power prediction, an numerical weather predicition (NWP) implicit correction algorithm based on multi-objective collaborative training is proposed. Firstly, the necessity of NWP correction and the problems of the two-step prediction method based on NWP explicit correction are analyzed. Then, aiming at the problems existing in the two-step prediction method, the optimization method based on multi-objective collaborative training uses the neural network to perform NWP implicit correction, train the model in an end-to-end manner, and realize the functions of NWP implicit correction and wind power prediction at the same time. Combined with the measured data of a wind farm, the specific calculation case analysis proves that the proposed algorithm has an improving effect on short-term, medium- and long-term wind power prediction. In addition, the algorithm only requires one network and avoids secondary calculation, saving computing and storage costs.

    参考文献
    相似文献
    引证文献
引用本文

宋家康,赵建勇,孙海霞,王华雷,年珩,张森.基于多目标协同训练的风电功率预测提升算法[J].电力工程技术,2023,42(6):232-240

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-25
  • 最后修改日期:2023-07-29
  • 录用日期:2023-03-21
  • 在线发布日期: 2023-11-23
  • 出版日期: 2023-11-28
文章二维码