一种采用记忆神经网络和曲线形状修正的负荷预测方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM715

基金项目:

河北省自然科学基金资助项目(E2020202142)


A load prediction method using memory neural network and curve shape correction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对分布式电源和新型负荷容量累积造成负荷影响因素多元化和不确定性特性增强的问题,文中提出一种采用记忆神经网络和曲线形状修正的负荷预测方法。在负荷峰值预测中,采用最大信息系数计算负荷峰值与影响因素的非线性相关性,实现对输入特征的筛选;综合考虑负荷峰值序列的长短期自相关性和输入特征与负荷峰值的不同程度相关性,结合Attention机制和双向长短时记忆(bidirectional long short-term memory,BiLSTM)神经网络建立负荷峰值预测模型。在负荷标幺曲线预测中,通过误差倒数法组合相似日和相邻日,建立负荷标幺曲线预测模型;针对预测偏差的非平稳特征,利用自适应噪声的完全集成经验模态分解和BiLSTM网络建立误差预测模型,对曲线形状进行修正。应用中国北方某城市的区域电网负荷数据为算例,验证了所提模型的有效性。

    Abstract:

    Aiming at the problems that multiplex influencing factors and strong uncertainty in distribution network load caused by the capacity accumulation of distributed generation and new loads,a load prediction method using memory neural network and curve shape correction is proposed. In load peak prediction,the maximum information coefficient is applied to calculate the nonlinear correlation between load peak and influencing factors,so as to select the input features. Considering the long-term and short-term autocorrelation in load peak sequence and the different correlation between input features and load peak, the load peak prediction model is established with the Attention mechanism and bidirectional long-short term memory (BiLSTM) neural network. In load per-unit curve prediction,a prediction model is established by combining similar day and adjacent day through the reciprocal error method. In view of the non-stationary characteristics of prediction deviation,the complete ensemble empirical mode decomposition with adaptive noise and BiLSTM network are used to establish an error prediction model to correct the curve shape. The validity of the proposed model is verified by an example of regional power grid load of a city in northern China.

    参考文献
    相似文献
    引证文献
引用本文

张家安,李凤贤,王铁成,郝妍.一种采用记忆神经网络和曲线形状修正的负荷预测方法[J].电力工程技术,2024,43(1):117-126

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-15
  • 最后修改日期:2023-10-27
  • 录用日期:2023-04-10
  • 在线发布日期: 2024-01-19
  • 出版日期: 2024-01-28
文章二维码