基于先验统计模型的非侵入负荷辨识算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM714

基金项目:

国网北京市电力公司项目低压台区用户非介入式负荷辨识技术研究及负荷辨识关键装置研发应用


Resident non-invasive load identification algorithm
based on prior statistical model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统非侵入负荷辨识技术中电热细分能力不足的问题,文中提出了一种基于先验知识与统计学习模型的居民非侵入式负荷辨识算法。文中对洗衣机辅热、电水壶、电饭锅、电热水器等设备进行了电热细分研究,通过设备运行关联算法实现了辅热设备的细分,并在用户有限反馈信息和专家标注的基础上,实现了非辅热设备分类的模型训练。实验结果表明,文中所提技术框架在事件检测负荷辨识算法的基础上实现了电热设备的细分,且在运行状态分解的F1分数指标中取得了0.9以上的优异效果。

    Abstract:

    In this paper,a non-intrusive load identification algorithm for residents based on prior knowledge and statistical learning model is proposed to solve the problem of insufficient electric heating subdivision capability in traditional identification technology. In this paper,the electric heating subdivision research is carried out for the auxiliary heating equipment of washing machine,electric kettle,electric rice cooker,electric water heater. The subdivision of auxiliary heating equipment is realized through the equipment operation association algorithm,and the model training of non-auxiliary heating equipment classification is realized based on the limited feedback information of users and expert annotation. The experimental results show that the technical framework proposed in this paper realizes the subdivision of electric heating equipment on the basis of the event detection load identification algorithm and F1 socre above 0.9 is achieved in the decomposition of operation state.

    参考文献
    相似文献
    引证文献
引用本文

赵成,宋彦辛,周赣,冯燕钧,郭帅,李季巍.基于先验统计模型的非侵入负荷辨识算法[J].电力工程技术,2024,43(1):165-173,211

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-19
  • 最后修改日期:2023-11-29
  • 录用日期:2023-03-14
  • 在线发布日期: 2024-01-19
  • 出版日期: 2024-01-28
文章二维码