基于XGBoost-MTL的综合能源系统多元负荷预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM715

基金项目:

国家自然科学基金资助项目(92067105,71871160);上海市“科技创新行动计划”地方院校能力建设专项项目(20020500500)


Multivariate load forecasting for integrated energy system based on XGBoost-MTL
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    精确的多元负荷预测是综合能源系统(integrated energy system,IES)优化调度和稳定运行的前提。针对IES中多元负荷之间耦合关系复杂以及影响负荷预测的因素众多等问题,文中提出一种基于极限梯度提升(extreme gradient boosting,XGBoost)与多任务学习(multi task learning,MTL)的多元负荷预测方法。首先通过XGBoost重要度排序得到各影响因素对于多元负荷的贡献度,依据贡献度来选取影响负荷预测的关键性因素作为预测模型的输入,保证了输入特征对于多元负荷预测有效的修正作用;其次以门控循环单元(gated recurrent unit,GRU)作为共享层来搭建MTL预测模型,各子任务通过共享信息来有效利用各负荷之间复杂的耦合关系;最后以上海某综合能源站的负荷数据为例对文中所提模型的有效性进行验证。结果表明:该模型能够适应实际综合能源系统中各类负荷的变化,有效提高预测精度并减少训练时间。

    Abstract:

    Accurate multivariate load forecasting is a prerequisite for optimal scheduling and stable operation of integrated energy system (IES). Aiming at the complex coupling relationship between multiple loads and many factors affecting load forecasting in IES,a method for multivariate load prediction based on extreme gradient boosting (XGBoost) and multi task learning (MTL) is proposed. Firstly,the contribution of each influencing factor to the multivariate load is obtained by XGBoost importance ranking,and the key factors influencing the load prediction are selected as the input of the prediction model based on the contribution,which ensures the effective correction of the input features to the multivariate load prediction. Secondly,the gated recurrent unit (GRU) is used as a shared layer to build the MTL prediction model,and the sub-tasks share information with each other to effectively exploit the complex coupling relationship between the loads. Finally,the validity of the proposed model is verified by using the load data of an integrated energy station in Shanghai as an example,and the results show that the model can adapt to the changes of various types of loads in the actual integrated energy system,effectively improving the prediction accuracy and reducing the training time.

    参考文献
    相似文献
    引证文献
引用本文

马传杰,孙宇贞,彭道刚,赵慧荣.基于XGBoost-MTL的综合能源系统多元负荷预测[J].电力工程技术,2023,42(5):158-166

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-22
  • 最后修改日期:2023-05-23
  • 录用日期:2022-12-23
  • 在线发布日期: 2023-10-10
  • 出版日期: 2023-09-28
文章二维码