基于熵权层次法的油浸式变压器绝缘状态评价
作者:
中图分类号:

TM854

基金项目:

基于倏逝场的电力变压器油中溶解乙炔传感机制研究


Insulation condition evaluation of oil-immersed transformer based on entropy weight hierarchy method
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为有效评估油浸式变压器的绝缘状态,文中提出一种综合主观专家经验和指标退化程度的熵权层次法。首先,基于油色谱、环境温度和缺陷信息等指标构建用于绝缘状态评价的层次结构,根据专家经验对各个指标进行主观权重分配;接着,采用组合权重的方法,在指标层权重分配上引入熵权权重,从而在保留专家经验对准则层判断的情况下,对底层权重进行动态调整,体现变压器运行过程中的差异性;然后,将变压器的绝缘状态从常见的4种扩展为5种,实现对绝缘状态更准确的感知;最后,4台500 kV变压器的实例分析表明,相较于仅采用主观权重或客观权重,文中提出的方法可以有效识别运行状态正常的变压器并甄别异常变压器。

    Abstract:

    In order to evaluate the insulation condition of oil-immersed transformers effectively,a weight allocation method considering expert experience and degradation state is proposed in this paper. Firstly,a hierarchical structure for insulation condition evaluation is built based on dissolved gas in oil,ambient temperature and defect information,and subjective weights is assigned to each index based on expert experience. Then,the method of combined weight is adopted to introduce entropy weight into the weight allocation of index layer,thus weights of the index layer are dynamically adjusted to reflect the differences in the individual operation process while retaining expert experience for the criterion layer. Furthermore,the transformer insulation state is subdivided into five states from common four to realize more accurate perception of insulation state. Finally,case study of four 500 kV transformers shows that the method proposed can effectively identify normal transformers and discriminate abnormal transformers compared with the method based only on objective or subjective weight,which verifies the rationality of the method.

    参考文献
    [1] TAMMA W R,PRASOJO R A,SUWARNO. High voltage power transformer condition assessment considering the health index value and its decreasing rate[J]. High Voltage,2021,6(2):314-327.
    [2] FAN J M,FU C Y,YIN H,et al. Power transformer condition assessment based on online monitor with SOFC chromatographic detector[J]. International Journal of Electrical Power & Energy Systems,2020,118:105805.
    [3] AHMADI S A,SANAYE-PASAND M. A robust multi-layer framework for online condition assessment of power transformers[J]. IEEE Transactions on Power Delivery,2022,37(2):947-954.
    [4] 韩笑,王新迎,韩帅,等. 基于不均衡数据集成学习的大型电力变压器状态评价方法[J]. 电网技术,2021,45(1):107- 114. HAN Xiao,WANG Xinying,HAN Shuai,et al. Ensemble learning method for large-scale power transformer status evaluation based on imbalanced data[J]. Power System Technology,2021,45(1):107-114.
    [5] 刘云鹏,许自强,李刚,等. 人工智能驱动的数据分析技术在电力变压器状态检修中的应用综述[J]. 高电压技术,2019,45(2):337-348. LIU Yunpeng,XU Ziqiang,LI Gang,et al. Review on applications of artificial intelligence driven data analysis technology in condition based maintenance of power transformers[J]. High Voltage Engineering,2019,45(2):337-348.
    [6] 石宜金,谭贵生,赵波,等. 基于模糊综合评估模型与信息融合的电力变压器状态评估方法[J]. 电力系统保护与控制,2022,50(21):167-176. SHI Yijin,TAN Guisheng,ZHAO Bo,et al. Condition assessment method for power transformers based on fuzzy comprehensive evaluation and information fusion[J]. Power System Protection and Control,2022,50(21):167-176.
    [7] 王庆杰,马静,李佳,等. 基于云模型与相似度的配电变压器电气状态综合评估[J]. 电力信息与通信技术,2022,20(10):54-61. WANG Qingjie,MA Jing,LI Jia,et al. Comprehensive evaluation of distribution transformer electrical state based on cloud model and similarity[J]. Electric Power Information and Communication Technology,2022,20(10):54-61.
    [8] 张寒,刘卫东,潘志敏,等. 基于自适应概率神经网络的变压器健康状态评估[J]. 高压电器,2022,58(2):103-110. ZHANG Han,LIU Weidong,PAN Zhimin,et al. Health state assessment of transformer based on adaptive probabilistic neural network[J]. High Voltage Apparatus,2022,58(2):103-110.
    [9] 周秀,刘威峰,田天,等. 考虑历史工况的电力变压器健康状态评估模型[J]. 高压电器,2021,57(2):70-76. ZHOU Xiu,LIU Weifeng,TIAN Tian,et al. Health condition assessment model of power transformer considering historical condition[J]. High Voltage Apparatus,2021,57(2):70-76.
    [10] 国家电网公司. 油浸式变压器(电抗器)状态评价导则:Q/GDW 169—2016[S]. 北京:中国电力出版社,2016. State Grid Corporation of China. Guide for condition evaluation of oil-immersed power transformers (reactors):Q/GDW 169-2016[S]. Beijing:China Electric Power Press,2016.
    [11] The Institute of Electrical and Electronics Engineers. IEEE guide for the interpretation of gases generated in mineral oil-immersed transformers:IEEE Std C57.104-2019[S]. New York,USA:2019.
    [12] AZMI A,JASNI J,AZIS N,et al. Evolution of transformer health index in the form of mathematical equation[J]. Renewable and Sustainable Energy Reviews,2017,76:687-700.
    [13] TIAN F L,JING Z Z,ZHAO H A,et al. A synthetic condition assessment model for power transformers using the fuzzy evidence fusion method[J]. Energies,2019,12(5):857.
    [14] 胡碧伟,邓祥力,贾声昊. 基于ANFIS的变压器寿命预测和状态评估[J]. 电测与仪表,2022,59(1):61-68. HU Biwei,DENG Xiangli,JIA Shenghao. Transformer life estimation and state assessment based on ANFIS[J]. Electrical Measurement & Instrumentation,2022,59(1):61-68.
    [15] 辛建波,康琛,翁新林,等. 基于聚类和时间序列分析的变压器状态评价方法[J]. 电力系统保护与控制,2019,47(3):64-70. XIN Jianbo,KANG Chen,WENG Xinlin,et al. Evaluation method of transformer state based on clustering and time series analysis[J]. Power System Protection and Control,2019,47(3):64-70.
    [16] 程宏波,伦利,康琛,等. 一种基于多元统计分析的变压器状态评判方法[J]. 电网技术,2018,42(8):2719-2724. CHENG Hongbo,LUN Li,KANG Chen,et al. A method for evaluating the state of a transformer based on multivariate statistical analysis[J]. Power System Technology,2018,42(8):2719-2724.
    [17] SUN L J,MA Z,SHANG Y W,et al. Research on multi-attribute decision-making in condition evaluation for power transformer using fuzzy AHP and modified weighted averaging combination[J]. IET Generation,Transmission & Distribution,2016,10(15):3855-3864.
    [18] 杜江,孙铭阳. 基于变权灰云模型的变压器状态层次评估方法[J]. 电工技术学报,2020,35(20):4306-4316. DU Jiang,SUN Mingyang. Hierarchical assessment method of transformer condition based on weight-varying grey cloud model[J]. Transactions of China Electrotechnical Society,2020,35(20):4306-4316.
    [19] 吴奕,朱海兵,周志成,等. 基于熵权模糊物元和主元分析的变压器状态评价[J]. 电力系统保护与控制,2015,43(17):1-7. WU Yi,ZHU Haibing,ZHOU Zhicheng,et al. Transformer condition assessment based on entropy fuzzy matter-element and principal component analysis[J]. Power System Protection and Control,2015,43(17):1-7.
    [20] AZIS PRASOJO R,SUWARNO,ULFA MAULIDEVI N,et al. A multiple expert consensus model for transformer assessment index weighting factor determination[C]//2020 8th International Conference on Condition Monitoring and Diagnosis (CMD). Phuket,Thailand. IEEE,2020:234-237.
    [21] 宋人杰,刘瑞英,刘耀伟,等. 基于层次灰关联分析的变压器状态评估关键指标体系构建及应用[J]. 高电压技术,2018,44(8):2509-2515. SONG Renjie,LIU Ruiying,LIU Yaowei,et al. Key indicator system establishment and application for transformer condition assessment based on hierarchy grey relation analysis[J]. High Voltage Engineering,2018,44(8):2509-2515.
    [22] 张晶晶,许修乐,丁明,等. 基于模糊层次分析法的变压器状态评估[J]. 电力系统保护与控制,2017,45(3):75-81. ZHANG Jingjing,XU Xiule,DING Ming,et al. A condition assessment method of power transformers based on fuzzy analytic hierarchy process[J]. Power System Protection and Control,2017,45(3):75-81.
    [23] MADAVAN R, SAROJA S. Decision making on the state of transformers based on insulation condition using AHP and TOPSIS methods[J]. IET Science,Measurement & Technology,2020,14(2):137-145.
    [24] 邓铭,黄际元,吴东琳,等. 基于层次分析法的“源-网-荷-储”互动方案汇聚潜力评估[J]. 供用电,2022,39(9):83-92. DENG Ming,HUANG Jiyuan,WU Donglin,et al. Assessment of the convergence potential of the "source-network-load-storage" interactive scheme based on the analytic hierarchy process[J]. Distribution & Utilization,2022,39(9):83-92.
    [25] 彭俊程,贺英倩,周华兵,等. 基于模糊层次分析法的扶贫光伏电站类型选择[J]. 供用电,2021,38(5):70-75. PENG Juncheng,HE Yingqian,ZHOU Huabing,et al. Photovoltaic poverty alleviation power stations type selection based on fuzzy analytic hierarchy process[J]. Distribution & Utilization,2021,38(5):70-75.
    [26] 季玉琦,潘超,肖晗,等. 分布式电源电压支撑能力层次分析评价[J]. 电力系统保护与控制,2021,49(11):163-171. JI Yuqi,PAN Chao,XIAO Han,et al. Hierarchical analysis and evaluation of the voltage support capability of distributed generation[J]. Power System Protection and Control,2021,49(11):163-171.
    [27] 洪志国,李焱,范植华,等. 层次分析法中高阶平均随机一致性指标(RI)的计算[J]. 计算机工程与应用,2002,38(12):45-47,150. HONG Zhiguo,LI Yan,FAN Zhihua,et al. Caculation on high-ranked RI of analytic hierarchy process[J]. Computer Engineering and Applications,2002,38(12):45-47,150.
    [28] 廖瑞金,张镱议,黄飞龙,等. 基于可拓分析法的电力变压器本体绝缘状态评估[J]. 高电压技术,2012,38(3):521- 526. LIAO Ruijin,ZHANG Yiyi,HUANG Feilong,et al. Power transformer condition assessment strategy using matter element analysis[J]. High Voltage Engineering,2012,38(3):521- 526.
    [29] 张鹏,齐波,李文璞,等. 考虑部位和性能的电力变压器差异化评价方法[J]. 中国电机工程学报,2019,39(20):6138-6147,6195. ZHANG Peng,QI Bo,LI Wenpu,et al. A differentiated evaluation method of transformers considering the part and its performances[J]. Proceedings of the CSEE,2019,39(20):6138-6147,6195.
    [30] 党建,魏慧,贾嵘,等. 基于定量修正层次分析的变压器性能评估方法研究[J]. 高压电器,2020,56(7):133-141,151. DANG Jian,WEI Hui,JIA Rong,et al. Research on transformer performance evaluation based on quantitative correction analytic hierarchy process[J]. High Voltage Apparatus,2020,56(7):133-141,151.
    [31] 郝如海,智勇,祁莹,等. 基于熵权法的新能源高渗透率送端电网风险模糊综合评价[J]. 电力科学与技术学报,2021,36(1):73-78. HAO Ruhai,ZHI Yong,QI Ying,et al. Fuzzy synthetic evaluation based on entropy method of high renewable energy penetration power grid at sending end[J]. Journal of Electric Power Science and Technology,2021,36(1):73-78.
    [32] 中国电器工业协会. 电力变压器第1部分:GB/T 1094.1— 2013[S]. 北京:中国标准出版社,2013. CEEIA. Power transformers-part 1:GB/T 1094.1-2013[S]. Beijing:Standards Press of China,2013.
    [33] 国际电工委员会(IEC). 电网资产战略管理[M]. 北京:中国电力出版社,2017. International Electrotechnical Commission. Strategic asset management of power networks [M]. Beijing:China Electric Power Press,2017.
    相似文献
    引证文献
引用本文

李波,张文乾,刘维,崔德智,江军,张潮海.基于熵权层次法的油浸式变压器绝缘状态评价[J].电力工程技术,2023,42(4):223-230

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-17
  • 最后修改日期:2023-02-21
  • 录用日期:2022-11-17
  • 在线发布日期: 2023-07-20
  • 出版日期: 2023-07-28
文章二维码