基于相空间张量分解的有载分接开关故障诊断
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM403.4

基金项目:

国家重点研发计划资助项目(2019YFE0102900)


Intelligent diagnosis of mechanical fault of on-load tap-changer based on tensor decomposition in phase space
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    有载分接开关一次档位切换过程中伴生的振动信号与其机械状态密切相关。文中基于有载分接开关档位切换过程中振动信号的高维相点空间分布,对有载分接开关多个位置处的振动信号进行张量化表示,用以捕捉尽可能丰富的有载分接开关机械状态信息。然后对所构建的相空间三阶张量进行Tucker张量分解以获取核心张量,据此建立基于卷积神经网络的有载分接开关机械故障判别模型。以某CM型有载分接开关动作时的振动信号为例进行分析,结果表明,有载分接开关动作时的振动信号的相空间核心张量信息全面且冗余少,所构建的基于卷积神经网络的有载分接开关机械故障诊断模型性能良好,准确率超过95%,可为有载分接开关的故障识别及状态维修提供参考依据。

    Abstract:

    Vibration signals associated with on-load tap-changer (OLTC) gear switching is closely related to its mechanical state. Based on the high-dimensional phase point spatial distribution of the vibration signal of OLTC,the vibration signals at multiple positions of OLTC are represented by tensor quantization to capture as rich as possible the mechanical status information of OLTC. Then,the third order tensor in the phase space is decomposed into Tucker tensor to obtain the core tensor,and a discriminative model of OLTC mechanical fault based on convolutional neural network is established. Taking the vibration signal of a certain CM type OLTC as an example for analysis,the results show that the phase space core tensor information of the vibration signal of OLTC is comprehensive and less redundant when the OLTC acts. The mechanical fault diagnosis model based on the convolutional neural network has good performance,with an accuracy rate of more than 95%,which can provide a reference for fault identification and condition maintenance of OLTC.

    参考文献
    相似文献
    引证文献
引用本文

陈文通,盛骏,钱肖,吴雪峰,王丰华.基于相空间张量分解的有载分接开关故障诊断[J].电力工程技术,2023,42(4):248-255

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-05
  • 最后修改日期:2023-02-07
  • 录用日期:2022-09-19
  • 在线发布日期: 2023-07-20
  • 出版日期: 2023-07-28
文章二维码