500 kV输电铁塔覆冰风险评估与加固措施
作者:
中图分类号:

TM754

基金项目:

广东省基础与应用基础研究基金资助项目(2019A1515012122);中国南方电网有限责任公司科技项目(066600KK52190063)


Icing risk assessment and reinforcement measures of 500 kV transmission tower
Author:
Fund Project:

Key Core Technology Research Project of China Southern Power Grid Corporation (066600kk52190063); Guangdong Basic and Applied Basic Research Fund Project (2019A1515012122)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    输电线路覆冰可能导致输电铁塔倒塌、线路断线,严重威胁电网的安全稳定运行。针对某地区的典型覆冰线路,采用有限元仿真方法建立了500 kV塔线体系仿真模型,并对均匀覆冰下不同覆冰厚度和不同风速等工况进行仿真分析,统计25组仿真结果后获得了500 kV输电铁塔的薄弱点位置规律;然后,基于输电铁塔关键构件的轴向应力和节点位移,进行输电铁塔运行风险评估分析,并划分输电铁塔的运行风险状态;最后,进一步分析2类加固措施的效果,得到加固前后输电铁塔不同薄弱点位置处轴向应力和节点位移的变化关系。仿真结果表明:500 kV输电铁塔的薄弱点位置主要分布在铁塔塔头地线支架处、上下曲臂连接处、瓶颈处以及铁塔的塔身处;在均匀覆冰和风荷载作用下,关键构件的轴向应力和节点位移均呈非线性增加;拟合得到了输电铁塔安全、预警和危险状态临界表达式;增加构件横截面积的加固效果优于改变薄弱点角钢结构,后者加固前后输电铁塔薄弱点处的轴向应力和节点位移均无明显变化。

    Abstract:

    The existing of transmission line icing may lead to the collapse of the transmission tower and disconnection of the transmission line,which seriously threatens the safe and stable operation of power grid. In this paper,aiming at the typical icing lines in Guizhou,the simulation model of 500 kV tower-line system is established by finite element simulation method,and the simulation analysis of different icing thicknesses and different wind speeds under uniform icing is carried out. The weak point position rules of 500 kV transmission tower are obtained by counting 25 groups of simulation results. Then,based on the axial stress and node displacement of the weak components of the transmission tower, the operational risk assessment analysis of the transmission tower is carried out,and the operational risk state of the transmission tower is divided. Furthermore,the effect analysis of two kinds of reinforcement measures is carried out,and the relationship between axial stress and node displacement at different weak points of the transmission tower before and after reinforcement is obtained. The results show that the weak points of the 500 kV transmission tower are mainly distributed at the ground bracket of the tower head,the joint of the upper and lower curved arms, the bottle neck and the body of the tower. Under uniform icing and wind load,the axial stress and node displacement of key components increase nonlinearly. The critical expressions of safety,warning and dangerous state of the transmission tower are fitted. The reinforcing effect of increasing the cross-sectional area of components is better than that of changing the angle steel structure with weak points. The axial stress and joint displacement of the transmission tower at the weak point have no obvious change before and after reinforcement when changing the angle steel.

    参考文献
    [1] 孙立强,李鹏,刘宣廷,等. 考虑连锁故障的覆冰灾害下输电线路脆弱性分析模型[J]. 高压电器,2022,58(1):155-161, 169. SUN Liqiang,LI Peng,LIU Xuanting,et al. Analysis model of transmission line under ice coating disaster considering cascading fault[J]. High Voltage Apparatus,2022,58(1):155-161, 169.
    [2] 张瑚,吕健双,汪峰,等. 基于塔线体系的中冰区分裂导线不均匀脱冰跳跃研究[J]. 水电能源科学,2021,39(10):204-207,198. ZHANG Hu,LYU Jianshuang,WANG Feng,et al. Research on unevenice-shedding jump of bundled conductors in middle ice area based on tower-line system[J]. Water Resources and Power,2021,39(10):204-207,198.
    [3] JI K P,RUI X M,LI L,et al. Dynamic response of iced overhead electric transmission lines following cable rupture shock and induced ice shedding[J]. IEEE Transactions on Power Delivery,2016,31(5):2215-2222.
    [4] YANG Z Y,JIANG X L,HUANG Y F,et al. Influence of electric field on the ice-coating process of insulators with a different dielectric surface[J]. IET Science,Measurement & Technology,2020,14(5):585-592.
    [5] 陆兴华,吴佰建,郭小明. 复合横担覆冰断线的动力分析与强度设计[J]. 电力工程技术,2021,40(6):193-198. LU Xinghua,WU Baijian,GUO Xiaoming. Dynamicb analysis and strength design of composite cross arm considering icing conductor-breaking effects[J]. Electric Power Engineering Technology,2021,40(6):193-198.
    [6] ZHANG J,XIE Q. Failure analysis of transmission tower subjected to strong wind load[J]. Journal of Constructional Steel Research,2019,160:271-279.
    [7] ALBERMANI F,KITIPORNCHAI S,CHAN R W K. Failure analysis of transmission towers[J]. Engineering Failure Analysis,2009,16(6):1922-1928.
    [8] ALBERMANI F G A,KITIPORNCHAI S. Numerical simulation of structural behaviour of transmission towers[J]. Thin-Walled Structures,2003,41(2/3):167-177.
    [9] 张健,李小亭,张博,等. 新疆地区750 kV线路覆冰与脱冰事故分析[J]. 浙江电力,2020,39(10):58-62. ZHANG Jian,LI Xiaoting,ZHANG Bo,et al. Analysis of icing and ice shedding failures on 750 kV transmission lines in Xinjiang[J]. Zhejiang Electric Power,2020,39(10):58-62.
    [10] 王燕,皇甫成,杜志叶,等. 覆冰情况下输电线路有限元计算及其结构优化[J]. 电力系统保护与控制,2016,44(8):99-106. WANG Yan,HUANGFU Cheng,DU Zhiye,et al. Finite element calculation and structural optimization method for the high voltage transmission line under icing condition[J]. Power System Protection and Control,2016,44(8):99-106.
    [11] 刘超,阮江军,甘艳,等. 覆冰条件下架空输电线路薄弱点分析[J]. 电瓷避雷器,2016(2):1-5,11. LIU Chao,RUAN Jiangjun,GAN Yan,et al. Analysis of weakpoint in overhead line under icing condition[J]. Insulators and Surge Arresters,2016(2):1-5,11.
    [12] 念路鹏,阳林,郝艳捧,等. 均匀覆冰时重冰区110 kV直线塔关键构件的受力分析[J]. 智慧电力,2020,48(1):15-22. NIAN Lupeng,YANG Lin,HAO Yanpeng,et al. Forces analysis on key components of 110 kV tangent tower with uniform icing in heavy icing area[J]. Smart Power,2020,48(1):15-22.
    [13] 张厚荣,张力,杨跃光,等. 覆冰工况下耐张塔失效预警技术研究[J]. 南方电网技术,2018,12(1):33-40. ZHANG Hourong,ZHANG Li,YANG Yueguang,et al. Research on failure warning technology ofstrain tower under icing condition[J]. Southern Power System Technology,2018,12(1):33-40.
    [14] 刘文峰,袁翔,何宝成,等. 不均匀覆冰对110kV杆塔的受力影响分析[J]. 广东电力,2019,32(11):136-143. LIU Wenfeng,YUAN Xiang,HE Baocheng,et al. Analysis of influence of uneven icing on stress of 110 kV tower[J]. Guangdong Electric Power,2019,32(11):136-143.
    [15] 周文武,张小力,江岳,等. 单档不均匀覆冰下架空线路不平衡张力及形变特性研究[J]. 电网与清洁能源,2021,37(9):45-50. ZHOU Wenwu,ZHANG Xiaoli,JIANG Yue,et al. Characteristics of unbalanced tension and relative displacement in overhead power lines under non-uniform accreted ice[J]. Power System and Clean Energy,2021,37(9):45-50.
    [16] 刘堃,白强. 500 kV酒杯塔和干字型耐张塔设计与优化[J]. 广东电力,2018,31(4):125-131. LIU Kun,BAI Qiang. Design and optimizationon 500 kV cup tower and JG type tension tower[J]. Guangdong Electric Power,2018,31(4):125-131.
    [17] 麻卫峰,王成,王金亮,等. 基于激光点云的高压输电线覆冰厚度反演[J]. 电力系统保护与控制,2021,49(4):89-95. MA Weifeng,WANG Cheng,WANG Jinliang,et al. Inversion of ice thickness for high voltage transmission line based on a LiDAR point cloud[J]. Power System Protection and Control,2021,49(4):89-95.
    [18] 何思阳. 基于主成分分析算法的综合考虑多因素输电线路灾害风险评估研究[J]. 电工技术,2022(3):25-26,30. HE Siyang. Research on transmission line disaster risk assessment considering multiple factors based on principal component analysis algorithm[J]. Electric Engineering,2022(3):25-26, 30.
    [19] 黄晓予,阮筱菲,陈俊. 浅析输电铁塔结构加固方法[J]. 能源与环境,2022(5):29-31. HUANG Xiaoyu,RUAN Xiaofei,CHEN Jun. Analysis on structural reinforcement method of transmission tower[J]. Energy and Environment,2022(5):29-31.
    [20] LU C H,MA X,MILLS J E. Modeling of retrofitted steel transmission towers[J]. Journal of Constructional Steel Research,2015,112:138-154.
    [21] 姜岚,罗曼平,黄力,等. 复合横担杆塔不平衡张力调节装置及其设计方法研究[J]. 智慧电力,2022,50(5):100-105. JIANG Lan,LUO Manping,HUANG Li,et al. Unbalance tension adjusting device and design method of composite cross arm tower[J]. Smart Power,2022,50(5):100-105.
    [22] LU C H,MA X,MILLS J E. The structural effect of bolted splices on retrofitted transmission tower angle members[J]. Journal of Constructional Steel Research,2014,95:263-278.
    [23] 谢强,阎启,李杰. 横隔面在高压输电塔抗风设计中的作用分析[J]. 高电压技术,2006,32(4):1-4. XIE Qiang,YAN Qi,LI Jie. Effects of diaphragm on wind resistant design of power transmission towers[J]. High Voltage Engineering,2006,32(4):1-4.
    [24] 谢强,丁兆东,赵桂峰,等. 不同横隔面配置方式的输电塔抗风动力响应分析[J]. 高电压技术,2009,35(3):683-688. XIE Qiang,DING Zhaodong,ZHAO Guifeng,et al. Wind resistant analysis of power transmission tower with different diaphragm arrangements[J]. High Voltage Engineering,2009,35(3):683-688.
    [25] 张峰,李鹏云. 基于塔-线体系的输电塔覆冰加固有限元分析[J]. 广东电力,2011,24(11):78-81. ZHANG Feng,LI Pengyun. Finite element analysis based on tower-line system of ice-covering reinforcement of transmission towers[J]. Guangdong Electric Power,2011,24(11):78-81.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

文屹,陈易飞,毛先胤,吴建蓉,范强,阳林.500 kV输电铁塔覆冰风险评估与加固措施[J].电力工程技术,2023,42(2):250-257

复制
分享
文章指标
  • 点击次数:645
  • 下载次数: 1278
  • HTML阅读次数: 1664
  • 引用次数: 0
历史
  • 收稿日期:2022-09-25
  • 最后修改日期:2022-11-21
  • 录用日期:2022-06-21
  • 在线发布日期: 2023-03-22
  • 出版日期: 2023-03-28
文章二维码