基于改进半监督阶梯网络的有载分接开关故障诊断方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(92066106)


Fault diagnosis method for OLTC based on improved semi-supervised ladder networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    有载分接开关(on-load tap changer,OLTC)是变压器实现有载调压的关键部件,具有复杂的机电结构。基于振动信号的OLTC机械故障诊断目前存在样本标记难度高而难以有效训练的难题。文中提出一种基于贝叶斯优化和卷积算子改进的阶梯网络(Bayesian optimization-convolutional ladder networks,BO-ConvLN),可在少标签情况下提高OLTC机械故障诊断的精度。首先,引入阶梯网络对振动信号进行半监督学习,充分利用大量无标签样本的潜在信息对特征提取过程进行指导,提升少标签情况下阶梯网络的诊断性能。然后,用卷积算子替代阶梯网络中的全连接形式的线性变换,增强阶梯网络对非平稳振动信号的特征提取能力。在此基础上,借助贝叶斯优化对阶梯网络高维超参数进行寻优,在有限时间成本下显著提升了模型的诊断精度。实验结果显示,在仅有40个标签的情况下,对传动卡涩、芯子润滑不足、顶盖松动3类故障的诊断精度达91.67%,证明了BO-ConvLN在故障诊断中的有效性。

    Abstract:

    On-load tap changers (OLTC) have complex mechanical and electrical structures,which are the key component for the on-load voltage regulation of transformers. Currently,due to the sample data which are not easy to be labeled,it is difficult to effectively train the OLTC mechanical fault diagnosis models based on vibration signals. To improve the fault diagnostic accuracy for OLTC with limited labeled data,a fault diagnosis method based on Bayesian optimization-convolutional ladder networks (BO-ConvLN) is proposed in this paper. Firstly,the ladder networks are used as a semi-supervised learning method for the feature extraction of vibration signals,which is guided by a large amount of unlabeled data,leading to the enhanced diagnostic ability of ladder networks only with a small amount of labeled data. Then,the fully-connected layers are replaced by convolutional operators in the ladder networks to better extract the features of non-stationary vibration signals. Furthermore,Bayesian optimization is used to optimize the high-dimensional hyperparameters of ladder networks,witch significantly improves the diagnostic accuracy of the model within limited time cost. The experiment results show that the diagnostic accuracy for the three types of faults,namely transmission shaft jams,poor switch lubrication,and top cover looseness,is 91.67% with a label count of only 40,which demonstrates the effectiveness of BO-ConvLN in the fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

郑尚直,仲林林,王同磊,高丙团.基于改进半监督阶梯网络的有载分接开关故障诊断方法[J].电力工程技术,2023,42(2):197-205

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-24
  • 最后修改日期:2022-12-01
  • 录用日期:2022-06-01
  • 在线发布日期: 2023-03-22
  • 出版日期: 2023-03-28
文章二维码