基于双层XGBoost和数据增强的空间负荷预测方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM715

基金项目:

上海市科委地方院校能力建设项目(20020500700),2020.10.1-2023.9.30,目前仅有这一个基金。


Spatial load forecasting method based on double-layer XGBoost and data enhancement
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决空间负荷预测面临的特征变量众多和数据匮乏问题,文中提出一种基于双层极端梯度提升(extreme gradient boosting,XGBoost)和数据增强的空间负荷预测方法。该方法首先将待预测区域按馈线供电范围划分为若干子区域;其次构建基于双层XGBoost的特征选择模型,第一层XGBoost对特征进行评分及排序,将组合特征和负荷输入第二层XGBoost并进行子区域负荷预测,根据子区域负荷预测结果选择每个子区域的最佳特征变量;然后利用生成对抗网络(generative adversarial network,GAN)增强每个子区域的训练集样本,并通过极限学习机(extreme learning machine,ELM)实现子区域预测;最后将每个子区域的预测值相加得到待预测区域的预测值。以上海市局部区域为例,对文中方法进行仿真实验和对比分析。结果表明,文中方法可同时解决特征变量选择和数据匮乏问题,具有更高的预测精度。

    Abstract:

    Spatial load forecasting faces the problems of multiple characteristic factors and data shortage. A spatial load forecasting method based on double-layer extreme gradient boosting (XGBoost) and data enhancement is proposed. Firstly,the area to be predicted is divided into several sub regions according to the supply range of feeder power. Secondly,a feature selection model based on double-layer XGBoost is constructed. The first layer XGBoost scores and sorts the features. The combined features are loaded into the second layer XGBoost for sub regional load forecasting. The best feature variables of each sub region are selected according to the load forecasting results. Then,the training set samples of each sub region are enhanced by the generative adversarial network (GAN),and the load of sub regions is forecasted through the extreme learning machine (ELM). Finally,the predicted values of sub regions are added to obtain the load of the region to be predicted. Taking local areas of Shanghai as an example,the simulated experiment and comparative analysis are carried out. The results show that the proposed method can solve the problems of characteristic variable selection and data shortage at the same time,and has high prediction accuracy.

    参考文献
    相似文献
    引证文献
引用本文

黄冬梅,张宁宁,胡安铎,胡伟,肖勇,陈岸青.基于双层XGBoost和数据增强的空间负荷预测方法[J].电力工程技术,2023,42(1):201-208

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-07-13
  • 最后修改日期:2022-09-29
  • 录用日期:2022-04-08
  • 在线发布日期: 2023-01-18
  • 出版日期: 2023-01-28
文章二维码