基于CSO-SVR的低压架空线路谐波损耗评估
作者:
中图分类号:

TM726.2

基金项目:

国家自然科学基金资助项目(61876040);中国南方电网有限责任公司资助项目(GDKJXM20172877)


Harmonic loss evaluation of low voltage overhead lines based on CSO-SVR model
Author:
Fund Project:

National Natural Science Foundation of China (61876040); China Southern Power Grid science and technology project (gdkjxm20172877)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对低压架空线路物理解析模型谐波损耗计算精度不高的问题,文中提出采用基于纵横交叉优化(CSO)算法的支持向量回归(SVR)模型对架空线路谐波损耗进行评估。首先,采用结构风险最小化设计的SVR模型,拟合线路特征与谐波损耗之间的关系。然后,利用CSO算法对SVR超参数进行全局搜索,以动态优化获取最优超参数组,建立CSO-SVR谐波损耗评估模型。文中依托国内某大型电能质量综合试验平台进行低压架空线路谐波试验,获得线路谐波损耗实测数据,并基于该数据对所提模型进行验证。结果表明,采用CSO算法对SVR超参数进行优化,可有效提升SVR模型的谐波损耗评估性能。与其他模型相比,所提模型的评估精度更高。

    Abstract:

    In view of the low calculation accuracy of physical analytical model of harmonic loss,a support vector regression (SVR) model based on crisscross optimization (CSO) algorithm is proposed to evaluate the harmonic loss of overhead lines. Firstly,the SVR model designed to minimize structural risk is used to fit the relationship between line characteristics and harmonic losses. Then,the SVR hyperparameters are globally searched by the CSO algorithm. The optimal hyperparameter group is obtained by dynamic optimization,and the CSO-SVR harmonic loss evaluation model is established. Based on a large power quality test platform,the harmonic test of low voltage overhead lines is carried out. And the proposed model is verified by the measured data of this test. The results show that using CSO algorithm to optimize hyperparameters of SVR can effectively improve the line loss evaluation performance of SVR model. Compared with other models,the proposed model presents higher accuracy.

    参考文献
    [1] 王毅,刘书铭,李琼林,等. 低压配电线路谐波电阻损耗模型参数辨识及实验验证[J]. 电网技术,2021,45(4):1480- 1486. WANG Yi,LIU Shuming,LI Qionglin,et al. Parameter identification and experimental verification of harmonic resistance loss model in low-voltage distribution lines[J]. Power System Technology,2021,45(4):1480-1486.
    [2] 蒋利民,孟珺遐,张静,等. 复合电能质量扰动下低压配电网中关键设备附加损耗的解耦分析[J]. 电测与仪表,2019,56(24):59-66. JIANG Limin,MENG Junxia,ZHANG Jing,et al. Decoupling analysis of additional loss of key equipment in low voltage distribution network under complex power quality disturbance[J]. Electrical Measurement & Instrumentation,2019,56(24):59-66.
    [3] 刘子腾,徐永海,丁一博,等. 考虑背景谐波电压波动和阻抗变化的多谐波责任划分[J]. 电力电容器与无功补偿,2021,42(3):84-91. LIU Ziteng,XU Yonghai,DING Yibo,et al. Multi-harmonic responsibility division considering background harmonic voltage fluctuation and impedance variation[J]. Power Capacitor & Reactive Power Compensation,2021,42(3):84-91.
    [4] 唐松浩,肖湘宁,陶顺. 非故意发射超高次谐波发生机理及影响因素分析[J]. 电力电容器与无功补偿,2021,42(2):103-109. TANG Songhao,XIAO Xiangning,TAO Shun. Analysis of mechanism and influencing factors of non-intentional emission of ultra high harmonics[J]. Power Capacitor & Reactive Power Compensation,2021,42(2):103-109.
    [5] 孙媛媛,李树荣,石访,等. 含分布式谐波源的配电网多谐波源责任划分[J]. 中国电机工程学报,2019,39(18):5389-5398,5586. SUN Yuanyuan,LI Shurong,SHI Fang,et al. Multiple harmonic source contribution determination in the active distribution network with distributed harmonic sources[J]. Proceedings of the CSEE,2019,39(18):5389-5398,5586.
    [6] 徐政,金砚秋,李斯迅,等. 海上风电场交流并网谐波谐振放大机理分析与治理[J]. 电力系统自动化,2021,45(21):85-91. XU Zheng,JIN Yanqiu,LI Sixun,et al. Mechanism analysis and mitigation of harmonic resonance amplification caused by AC integration of offshore wind farm[J]. Automation of Electric Power Systems,2021,45(21):85-91.
    [7] 谢荣斌,杜帆,程湘,等. 三相不平衡及谐波对三相四线低压配电网线损的影响[J]. 电力系统保护与控制,2020,48(21):22-30. XIE Rongbin,DU Fan,CHENG Xiang,et al. Influence of three-phase imbalance and harmonic on line loss of three-phase four-wire low-voltage distribution network[J]. Power System Protection and Control,2020,48(21):22-30.
    [8] JIANG L M,YAN H G,MENG J X,et al. Harmonic loss quantitative model of transmission line considering the skin effect[C]//2016 IEEE International Conference on Power and Renewable Energy. Shanghai,China. IEEE,2016:19-23.
    [9] MORGAN V T. Electrical characteristics of steel-cored aluminium conductors[J]. Proceedings of the Institution of Electrical Engineers,1965,112(2):325.
    [10] 魏超峰. 电力谐波对低压配电网损耗影响的量化分析研究[D]. 郑州:郑州大学,2018. WEI Chaofeng. Quantitative analysis of the influence of harmonic on the loss of low voltage distribution network[D]. Zhengzhou:Zhengzhou University,2018.
    [11] 王国利,刘磊,李斌,等. 基于磁特性分析的输电导线交流电阻计算[J]. 高压电器,2019,55(3):44-50. WANG Guoli,LIU Lei,LI Bin,et al. Calculation for AC resistance of overhead-line conductor based on magnetic properties analysis[J]. High Voltage Apparatus,2019,55(3):44-50.
    [12] 李亚,刘丽平,李柏青,等. 基于改进K-Means聚类和BP神经网络的台区线损率计算方法[J]. 中国电机工程学报,2016,36(17):4543-4552. LI Ya,LIU Liping,LI Baiqing,et al. Calculation of line loss rate in transformer district based on improved K-means clustering algorithm and BP neural network[J]. Proceedings of the CSEE,2016,36(17):4543-4552.
    [13] 何立强,赵允,于景亮. 基于改进PSO优化RBF神经网络线损计算与分析[J]. 东北电力技术,2020,41(4):55-59. HE Liqiang,ZHAO Yun,YU Jingliang. Calculation and analysis of optimized RBF neural network line loss based on improved PSO[J]. Northeast Electric Power Technology,2020,41(4):55-59.
    [14] 马丽叶,刘建恒,卢志刚,等. 基于深度置信网络的低压台区理论线损计算方法[J]. 电力自动化设备,2020,40(8):140-146. MA Liye,LIU Jianheng,LU Zhigang,et al. Theoretical line loss calculation method of low voltage transform district based on deep belief network[J]. Electric Power Automation Equipment,2020,40(8):140-146.
    [15] 徐茹枝,王宇飞. 粒子群优化的支持向量回归机计算配电网理论线损方法[J]. 电力自动化设备,2012,32(5):86-89,93. XU Ruzhi,WANG Yufei. Theoretical line loss calculation based on SVR and PSO for distribution system[J]. Electric Power Automation Equipment,2012,32(5):86-89,93.
    [16] 张义涛,王泽忠,刘丽平,等. 基于灰色关联分析和改进神经网络的10 kV配电网线损预测[J]. 电网技术,2019,43(4):1404-1410. ZHANG Yitao,WANG Zezhong,LIU Liping,et al. A 10 kV distribution network line loss prediction method based on grey correlation analysis and improved artificial neural network[J]. Power System Technology,2019,43(4):1404-1410.
    [17] 刘家庆,张弘鹏,郭希海,等. 基于SVR残差修正的光伏发电功率预测模型[J]. 电力工程技术,2020,39(5):146-151. LIU Jiaqing,ZHANG Hongpeng,GUO Xihai,et al. Prediction model of photovoltaic power generation based on SVR residual correction[J]. Electric Power Engineering Technology,2020,39(5):146-151.
    [18] 赫卫国,郝向军,郭雅娟,等. 基于ARIMA和SVR的光伏电站超短期功率预测[J]. 广东电力,2017,30(8):32-37. HE Weiguo,HAO Xiangjun,GUO Yajuan,et al. Ultra-short term power forecast based on ARIMA and SVR for photovoltaic power station[J]. Guangdong Electric Power,2017,30(8):32-37.
    [19] 李昕,闫宏伟,马弘毅. 相空间重构和支持向量机结合的电力负荷预测模型研究[J]. 电测与仪表,2014,51(24):6-10. LI Xin,YAN Hongwei,MA Hongyi. Study on power load forecasting model based on phase space reconstruction and SVM[J]. Electrical Measurement & Instrumentation,2014,51(24):6-10.
    [20] 殷豪,丁伟锋,陈顺,等. 基于长短时记忆网络-纵横交叉算法的含高比例新能源电力市场日前电价预测[J]. 电网技术,2022,46(2):472-480. YIN Hao,DING Weifeng,CHEN Shun,et al. Day-ahead electricity price forecasting of electricity market with high proportion of new energy based on LSTM-CSO model[J]. Power System Technology,2022,46(2):472-480.
    [21] ÜSTÜN B,MELSSEN W J,OUDENHUIJZEN M,et al. Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization[J]. Analytica Chimica Acta,2004,544(1):292-305.
    [22] MENG Anbo,HU Hanwu,YIN Hao,et al. Crisscross optimization algorithm for large-scale dynamic economic dispatch problem with valve-point effects[J]. Energy,2015,93:2175-2190.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孟安波,蔡涌烽,符嘉晋,陈德,殷豪,陈子辉.基于CSO-SVR的低压架空线路谐波损耗评估[J].电力工程技术,2022,41(3):202-208

复制
分享
文章指标
  • 点击次数:814
  • 下载次数: 1064
  • HTML阅读次数: 1457
  • 引用次数: 0
历史
  • 收稿日期:2022-01-12
  • 最后修改日期:2022-04-03
  • 录用日期:2021-10-13
  • 在线发布日期: 2022-05-24
  • 出版日期: 2022-05-28
文章二维码