基于先验方差的发电机惯量辨识数据质量评估
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM711

基金项目:

国家自然科学基金资助项目(U2066601)


Data quality evaluation of generator inertia identification based on prior variance
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    发电机惯量是电力系统频率特性分析与其在线应用中的重要参数。基于发电机正常运行时机端有功功率和频率的类噪声信号可对发电机惯量进行实时辨识。然而实测数据质量存在缺陷,导致现有算法对实测数据的辨识效果较差。为解决该问题,文中以谱分析与系统辨识理论为基础,建立惯量辨识结果的先验方差统计量。通过参考系统估计、模型参数方差估计和惯量方差估计3个步骤,计算得到先验方差。并在进行辨识前对类噪声数据段进行评价和筛选,提升惯量辨识的准确度。基于仿真数据和实测数据的数据评估筛选结果验证了该方法的有效性。结果表明,先验方差较小的数据段,惯量辨识的准确度较高。

    Abstract:

    Generator inertia is an essential parameter in the analysis of frequency characteristics of power system and its online applications. The inertia of a generator can be identified in real time based on ambient active power and frequency signals measured while the generator is in routine operation. However,due to data quality defects of field measurements,the results of inertia identification are poor when applying existing algorithms to actual data. To solve this problem,the a priori variance of inertia identification results is defined based on spectral analysis and system identification theory. The a priori variance is calculated by three steps:reference system estimation,model parameter variance estimation and inertia variance estimation. The segments of ambient data are evaluated and selected before identification,which improves the accuracy of inertia identification. Data evaluation and selection results based on simulation data and field measurements verify the proposed method. The results show that the data segments with smaller a priori variance have higher accuracy of inertia identification.

    参考文献
    相似文献
    引证文献
引用本文

叶洪波,姜阳,陈雪梅,崔勇,俞越,陆超.基于先验方差的发电机惯量辨识数据质量评估[J].电力工程技术,2022,41(2):201-208

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-21
  • 最后修改日期:2021-12-12
  • 录用日期:2021-07-21
  • 在线发布日期: 2022-03-24
  • 出版日期: 2022-03-28
文章二维码