面向非完全理性用户的多元充电站优化调度策略
作者:
中图分类号:

TM73

基金项目:

国家电网有限公司科技项目"基于大功率IGBT的电动汽车能源站柔性控制和主动安全关键技术研究及应用"


Optimal scheduling strategy of multi-element charging station for bounded rational users
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    电动汽车(EV)充电站是为用户提供充电服务并为电网提供能量聚合调节能力的中心,需要在保障用户需求的基础上实现各方利益的均衡。文中立足包含常规负荷、储能及分布式新能源(DRG)的多元充电站(MCS),设计激励用户参与调节的充电价格机制,并分别基于期望效用理论(EUT)和前景理论(PT),建立用户选择的理性和非完全理性模型。采用模型预测控制(MPC)方法,提出了兼顾充电站运营经济性和调节灵活性的调度策略,并通过虚拟变量的设置,将双层优化转化为单层优化,减少了计算时间。基于面向真实人的实验,验证了非完全理性模型在预测用户行为上的优势。优化仿真实验中,文中所提出的融合社会-物理方法的调度模型在电网指令跟随、经济性优化等方面均表现出了良好的性能。

    Abstract:

    Since charging stations are aggregation centers which provide charging service for electric vehicles and adjustment flexibility for power grid,it is necessary for charging stations to give consideration to interests of all partners with respect to users' independent choices. Focused on multi-element charging stations (MCS) which contain conventional load,energy storage,distributed renewable energy generation (DRG),charging price mechanism is firstly designed in this paper to improve participation motivation of users in providing charging flexibility. Then,both rational model based on expected utility (EUT) theory and bounded rational model based on prospect theory (PT) are established to describe users' selections. Model predictive control (MPC) is adopted to deal with uncertainties. Both operating economy and adjustment flexibility of charging stations have been taken into account in the comprehensive scheduling strategy. Finally,double-layer optimization is converted into single-layer through dummy variables to reduce calculation time and make the strategy suitable for online application. Advantages of the bounded rational model in predicting users' behavior are verified by experiments towards real people. In the simulation experiment,the proposed scheduling strategy integrating social-physical methods shows good performance in following requirements of power grid and reducing operating costs.

    参考文献
    [1] JI Z Y,HUANG X L. Plug-in electric vehicle charging infrastructure deployment of China towards 2020:Policies,methodologies,and challenges[J]. Renewable and Sustainable Energy Reviews,2018,90:710-727.
    [2] 盛锐,唐忠,薛佳诚. 多指标下EV充电站服务能力动态评价方法[J]. 中国电机工程学报,2021,41(14):4891-4904. SHENG Rui,TANG Zhong,XUE Jiacheng. Dynamic evaluation method of EV charging station service capability under multi indicators[J]. Proceedings of the CSEE,2021,41(14):4891-4904.
    [3] 窦迅,王俊,杨志宏,等. 含交直流混合配网综合能源系统的电动汽车分群调控策略[J]. 中国电机工程学报,2021,41(14):4829-4844. DOU Xun,WANG Jun,YANG Zhihong,et al. Cluster-based control strategies of electric vehicles for integrated energy system with AC-DC hybrid distribution network[J]. Proceedings of the CSEE,2021,41(14):4829-4844.
    [4] YILMAZ M,KREIN P T. Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces[J]. IEEE Transactions on Power Electronics,2013,28(12):5673-5689.
    [5] MEHTA R,SRINIVASAN D,KHAMBADKONE A M,et al. Smart charging strategies for optimal integration of plug-in electric vehicles within existing distribution system infrastructure[J]. IEEE Transactions on Smart Grid,2018,9(1):299-312.
    [6] 王斐,李正烁,叶萌,等. 电动汽车充电对电网的影响及其优化调度研究述评[J]. 南方电网技术,2016,10(6):70-80. WANG Fei,LI Zhengshuo,YE Meng,et al. Review on research of impact of electric vehicles charging on power grids and its optimal dispatch[J]. Southern Power System Technology,2016,10(6):70-80.
    [7] HERNANDEZ J C,SANCHEZ-SUTIL F,VIDAL P G,et al. Primary frequency control and dynamic grid support for vehicle-to-grid in transmission systems[J]. International Journal of Electrical Power & Energy Systems,2018,100:152-166.
    [8] MWASILU F,JUSTO J J,KIM E K,et al. Electric vehicles and smart grid interaction:a review on vehicle to grid and renewable energy sources integration[J]. Renewable and Sustainable Energy Reviews,2014,34:501-516.
    [9] YANG J,HE L F,FU S Y. An improved PSO-based charging strategy of electric vehicles in electrical distribution grid[J]. Applied Energy,2014,128:82-92.
    [10] 王姝凝,杨少兵. 居民小区电动汽车充电负荷有序控制策略[J]. 电力系统自动化,2016,40(4):71-77. WANG Shuning,YANG Shaobing. A coordinated charging control strategy for electric vehicles charging load in residential area[J]. Automation of Electric Power Systems,2016,40(4):71-77.
    [11] 郑宇,张睿,李正佳,等. 基于多群组均衡协同搜索算法的电动汽车充放电多目标优化[J]. 南方电网技术,2017,11(1):52-57,73. ZHENG Yu,ZHANG Rui,LI Zhengjia,et al. Multi-objective optimization of charging and discharging strategy for electric vehicles based on equilibrium-inspired multiple group search optimization[J]. Southern Power System Technology,2017,11(1):52-57,73.
    [12] KHOOBAN M H,NIKNAM T,DE BLAABJERG F,et al. A new load frequency control strategy for micro-grids with considering electrical vehicles[J]. Electric Power Systems Research,2017,143:585-598.
    [13] 张谦,史乐峰,任玉珑,等. 计及V2G备用服务的交易模式[J]. 中国电机工程学报,2012,32(31):59-67,219. ZHANG Qian,SHI Lefeng,REN Yulong,et al. The reserve trading model considering vehicle-to-grid reserve[J]. Proceedings of the CSEE,2012,32(31):59-67,219.
    [14] LIU H,HU Z C,SONG Y H,et al. Decentralized vehicle-to-grid control for primary frequency regulation considering charging demands[J]. IEEE Transactions on Power Systems,2013,28(3):3480-3489.
    [15] 杨天宇,郭庆来,盛裕杰,等. 系统互联视角下的城域电力-交通融合网络协同[J]. 电力系统自动化,2020,44(11):1-9. YANG Tianyu,GUO Qinglai,SHENG Yujie,et al. Coordination of urban integrated electric power and traffic network from perspective of system interconnection[J]. Automation of Electric Power Systems,2020,44(11):1-9.
    [16] XUE Y S,YU X H. Beyond smart grid-cyber-physical-social system in energy future point of view[J]. Proceedings of the IEEE,2017,105(12):2290-2292.
    [17] 陶长琪,盛积良. 决策理论与方法[M]. 北京:高等教育出版社,2016. TAO Changqi,SHENG Jiliang. Decision theory and method[M]. Beijing:Higher Education Press,2016.
    [18] 丹尼尔·卡尼曼. 选择、价值与决策[M]. 北京:机械工业出版社,2018. DANIEL Kahneman. Choices,values,and frames[M]. Beijing:China Machine Press,2018.
    [19] SHEPERO M,MUNKHAMMAR J,WIDE N J,et al. Modeling of photovoltaic power generation and electric vehicles charging on city-scale:a review[J]. Renewable and Sustainable Energy Reviews,2018,89:61-71.
    [20] QI W,XU Z W,SHEN Z J M,et al. Hierarchical coordinated control of plug-in electric vehicles charging in multifamily dwellings[J]. IEEE Transactions on Smart Grid,2014,5(3):1465-1474.
    [21] WANG S Y,BI S Z,ZHANG Y J A,et al. Electrical vehicle charging station profit maximization:admission,pricing,and online scheduling[J]. IEEE Transactions on Sustainable Energy,2018,9(4):1722-1731.
    [22] ZHANG H C,HU Z C,XU Z W,et al. Evaluation of achievable vehicle-to-grid capacity using aggregate PEV model[J]. IEEE Transactions on Power Systems,2017,32(1):784-794.
    [23] 董雷,刘梦夏,陈乃仕,等. 基于随机模型预测控制的分布式能源协调优化控制[J]. 电网技术,2018,42(10):3219-3227. DONG Lei,LIU Mengxia,CHEN Naishi,et al. Coordinated optimal control of distributed energy based on stochastic model predictive control[J]. Power System Technology,2018,42(10):3219-3227.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何胜利,刘现涛,张甜,陈中.面向非完全理性用户的多元充电站优化调度策略[J].电力工程技术,2021,40(5):34-40

复制
分享
文章指标
  • 点击次数:420
  • 下载次数: 2015
  • HTML阅读次数: 2331
  • 引用次数: 0
历史
  • 收稿日期:2021-03-24
  • 最后修改日期:2021-05-28
  • 录用日期:2021-06-28
  • 在线发布日期: 2021-09-30
  • 出版日期: 2021-09-28
文章二维码