绝缘子污秽等级的高光谱特征优化识别技术研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM855

基金项目:

中国南方电网有限责任公司科技项目“高压设备绝缘状态关联光谱检测与诊断技术研究”(YNKJXM20180015)


Optimization and identification technology of hyperspectral spectral features of insulator pollution levels
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决传统污秽检测方法对输电线路绝缘子污闪防治的局限性,通常采用非接触式、高分辨率的高光谱技术研究污秽在线检测技术。为有效提取反应污秽度的光谱特征,削弱冗余与干扰信息的影响,文中提出一种基于小波包能量谱特征优化的绝缘子污秽等级识别技术。首先,对不同污秽等级的绝缘子样品的光谱图像进行背景分割,提取均匀覆污区像素点的光谱均值曲线;其次,对不同图像的光强均匀度差异、环境噪声进行预处理,并通过对数变换提升不同污秽等级间的可区分性;再次,对预处理后的光谱曲线进行小波包能量谱特征提取;最后,基于所提特征建立基于支持向量机(SVM)的污秽等级识别模型。实验结果表明,相比于采用全波段数据或主成分分析(PCA)特征数据作为输入,基于小波包能量谱特征建立的SVM污秽等级识别模型对样品识别准确率更高,可以达到99.8%。

    Abstract:

    To solve the problem of traditional pollution detection methods on the prevention and control of pollution flashover of transmission line insulators,the non-contact and high-resolution hyperspectral technology is used to study the on-line pollution detection technology. At the same time,an insulator pollution level identification technology based on wavelet packet energy spectrum feature optimization is proposed to effectively extract the spectral features reflecting the pollution degree and weaken the influence of redundancy and interference information. Firstly,the spectral images of insulator samples with different pollution levels are segmented to extract the spectral mean curve of pixels in uniform pollution area. Secondly,the difference of light intensity uniformity and environmental noise of different images are preprocessed,and the differentiability among different pollution levels is improved by logarithmic transformation. Thirdly,the feature extraction of wavelet packet energy spectrum is performed on the preprocessed spectral lines. Finally,a pollution level recognition model based on the proposed features and support vector machines (SVM) is established. The experimental results show that the SVM pollution level recognition model based on wavelet energy spectrum features achieves 99.8%,and it has higher recognition accuracy than full band data or principal component analysis (PCA) feature data does.

    参考文献
    相似文献
    引证文献
引用本文

沈龙,钱国超,彭兆裕,李谦慧,杨坤,马御棠.绝缘子污秽等级的高光谱特征优化识别技术研究[J].电力工程技术,2022,41(2):156-162,208

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-11
  • 最后修改日期:2022-01-27
  • 录用日期:2021-06-07
  • 在线发布日期: 2022-03-24
  • 出版日期: 2022-03-28
文章二维码