基于VMD-LSTMQR的滚动母线负荷区间预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM715

基金项目:

国家自然科学基金资助项目(51977194)


Rolling bus load interval prediction based on VMD-LSTMQR
Author:
Affiliation:

Fund Project:

Project supported by National Natural Science Foundation of China (52077215)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    负荷区间预测能够对负荷出力变化进行概率化分析,准确量化不确定性因素对负荷的影响。相较于传统的点预测,区间预测更能直观反映负荷变化趋势,有助于保障电力系统的安全稳定运行。基于此,文中提出一种基于变分模态分解-长短期记忆神经网络分位数回归(VMD-LSTMQR)的滚动母线负荷区间预测方法。首先,文中采用VMD将原始母线负荷分解成一系列不同频率特征的子序列;接着,确定不同子序列的最优滚动步长并采用LSTMQR分别对不同子序列进行区间预测;最后,将不同子序列的区间预测进行重构,得到原始母线负荷预测结果。文中利用220 kV和10 kV母线负荷数据验证了所采用的区间预测模型相较于传统区间预测模型在预测精度、区间宽度方面得到明显改善。

    Abstract:

    Load interval prediction conducting probabilistic analysis for load power quantifies the impact of uncertain factors accurately. Compared with traditional point prediction,interval prediction is beneficial to the safety and stability of the power system,and it reflects the trend of load changes more intuitively. It is proposed a rolling bus load interval prediction method based on variational mode decomposition (VMD) and long short-term memory neural network quantile regression (LSTMQR) in this paper. First of all,the bus load is decomposed into a series of subsequences with different frequency characteristics by VMD. After that,the optimal rolling steps of different subsequences are determined and LSTMQR is used to predict power intervals of different subsequences. Finally,the interval predictions of different subsequences are reconstructed to obtain the original load prediction results. It is verified by 220 kV and 10 kV bus load data to obtain that the proposed method above has a significant improvement in prediction accuracy and interval width by comparing with traditional interval prediction models.

    参考文献
    相似文献
    引证文献
引用本文

董新伟,卜智龙,陈鸣慧,鹿文蓬,年珩.基于VMD-LSTMQR的滚动母线负荷区间预测[J].电力工程技术,2021,40(6):9-17

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-17
  • 最后修改日期:2021-08-21
  • 录用日期:2021-08-02
  • 在线发布日期: 2021-12-06
  • 出版日期: 2021-11-28
文章二维码