多通道长短期记忆卷积网络的风速预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM614

基金项目:

天津市自然科学基金资助项目(18JCYBJC88300)


Wind speed prediction based on multi-channel long short-term memory convolution neural network
Author:
Affiliation:

Fund Project:

Natural Science Foundation of Tianjin City(18JCYBJC88300)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高风速的预测性能,提出了多通道长短期记忆网络和卷积网络相结合的风速预测方法。预测模型由多个长短期记忆子网络及卷积网络组成。各子网络选择不同长度的历史数据作为输入,分别实现未来风速值的计算,避免了单一网络输入数据长度参数难以确定的问题。卷积网络将各子网络的计算结果进行卷积、最大池化操作,并通过全连接层计算风速序列的预测值。为避免预测误差累积及漂移,利用误差动态补偿方法对预测值进行校正,获得最终的预测结果。多通道长短期记忆卷积网络可用于风速的超短期预测中,仿真实验结果表明,与现有基于深度学习的预测网络相比,该网络能够更好地拟合实际风速序列的变化趋势,表现出更优的预测性能。

    Abstract:

    A wind speed prediction method based on the combination of multi-channel long short-term memory network and convolution neural network is proposed to improve the prediction performance of wind speed. The prediction model is composed of multiple long short-term memory sub-networks and convolution networks. Future wind speed values are calculated by each sub-network with the different input data length, which can avoid difficultly selecting the input data length in the single prediction network. Convolution and max-pooling operations of the calculation results of sub-networks are performed by the convolution network, and the prediction values of the wind speed are output by the fully connected layer of the convolution network. In order to overcome the accumulation and drift of prediction errors, the dynamic error compensation method is used to correct the prediction values. The network can be used in the ultra-short-term prediction of wind speed. Simulation results show that the network can better fit the variation trend of the actual wind speed series than the existing prediction networks based on deep learning, and the network shows better prediction performance.

    参考文献
    相似文献
    引证文献
引用本文

修春波,苏欢,苏雪苗.多通道长短期记忆卷积网络的风速预测[J].电力工程技术,2022,41(1):64-69

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-08-19
  • 最后修改日期:2021-10-25
  • 录用日期:2021-04-20
  • 在线发布日期: 2022-01-27
  • 出版日期: 2022-01-28
文章二维码