多通道长短期记忆卷积网络的风速预测
作者:
中图分类号:

TM614

基金项目:

天津市自然科学基金资助项目(18JCYBJC88300)


Wind speed prediction based on multi-channel long short-term memory convolution neural network
Author:
Fund Project:

Natural Science Foundation of Tianjin City(18JCYBJC88300)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为提高风速的预测性能,提出了多通道长短期记忆网络和卷积网络相结合的风速预测方法。预测模型由多个长短期记忆子网络及卷积网络组成。各子网络选择不同长度的历史数据作为输入,分别实现未来风速值的计算,避免了单一网络输入数据长度参数难以确定的问题。卷积网络将各子网络的计算结果进行卷积、最大池化操作,并通过全连接层计算风速序列的预测值。为避免预测误差累积及漂移,利用误差动态补偿方法对预测值进行校正,获得最终的预测结果。多通道长短期记忆卷积网络可用于风速的超短期预测中,仿真实验结果表明,与现有基于深度学习的预测网络相比,该网络能够更好地拟合实际风速序列的变化趋势,表现出更优的预测性能。

    Abstract:

    A wind speed prediction method based on the combination of multi-channel long short-term memory network and convolution neural network is proposed to improve the prediction performance of wind speed. The prediction model is composed of multiple long short-term memory sub-networks and convolution networks. Future wind speed values are calculated by each sub-network with the different input data length, which can avoid difficultly selecting the input data length in the single prediction network. Convolution and max-pooling operations of the calculation results of sub-networks are performed by the convolution network, and the prediction values of the wind speed are output by the fully connected layer of the convolution network. In order to overcome the accumulation and drift of prediction errors, the dynamic error compensation method is used to correct the prediction values. The network can be used in the ultra-short-term prediction of wind speed. Simulation results show that the network can better fit the variation trend of the actual wind speed series than the existing prediction networks based on deep learning, and the network shows better prediction performance.

    参考文献
    [1] AK R,FINK O,ZIO E. Two machine learning approaches for short-term wind speed time-series prediction[J]. IEEE Transactions on Neural Networks and Learning Systems,2016,27(8):1734-1747.
    [2] MAO M Q,LING J,CHANG L C,et al. A novel short-term wind speed prediction based on MFEC[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,2016,4(4):1206- 1216.
    [3] 薛禹胜,陈宁,王树民,等. 关于利用空间相关性预测风速的评述[J]. 电力系统自动化,2017,41(10):161-169. XUE Yusheng,CHEN Ning,WANG Shumin,et al. Review on wind speed prediction based on spatial correlation[J]. Automation of Electric Power Systems,2017,41(10):161-169.
    [4] CHEN M R,ZENG G Q,LU K D,et al. A two-layer nonlinear combination method for short-term wind speed prediction based on ELM,ENN,and LSTM[J]. IEEE Internet of Things Journal,2019,6(4):6997-7010.
    [5] KHODAYAR M,WANG J H,MANTHOURI M. Interval deep generative neural network for wind speed forecasting[J]. IEEE Transactions on Smart Grid,2019,10(4):3974-3989.
    [6] WANG J J,LI Y N. Multi-step ahead wind speed prediction based on optimal feature extraction,long short term memory neural network and error correction strategy[J]. Applied Energy,2018,230:429-443.
    [7] 苏盈盈,李翠英,王晓峰,等. 风电场短期风速的C-C和ELM快速预测方法[J]. 电力系统及其自动化学报,2019,31(7):76-80,87. SU Yingying,LI Cuiying,WANG Xiaofeng,et al. Fast prediction method for short-term wind speed in wind farm combined with C-C and ELM[J]. Proceedings of the CSU-EPSA,2019,31(7):76-80,87.
    [8] 阎洁,许成志,刘永前,等. 基于风速云模型相似日的短期风电功率预测方法[J]. 电力系统自动化,2018,42(6):53-59. YAN Jie,XU Chengzhi,LIU Yongqian,et al. Short-term wind power prediction method based on wind speed cloud model in similar day[J]. Automation of Electric Power Systems,2018,42(6):53-59.
    [9] KAPLAN O,TEMIZ M. A novel method based on Weibull distribution for short-term wind speed prediction[J]. International Journal of Hydrogen Energy,2017,42(28):17793-17800.
    [10] WANG J J,LI Y N. An innovative hybrid approach for multi-step ahead wind speedprediction[J]. Applied Soft Computing,2019,78:296-309.
    [11] 陈宁,薛禹胜,丁杰,等. 利用空间相关性的超短期风速预测[J]. 电力系统自动化,2017,41(12):124-130. CHEN Ning,XUE Yusheng,DING Jie,et al. Ultra-short term wind speed prediction using spatial correlation[J]. Automation of Electric Power Systems,2017,41(12):124-130.
    [12] CAI H S,JIA X D,FENG J S,et al. Gaussian Process Regression for numerical wind speed prediction enhancement[J]. Renewable Energy,2020,146:2112-2123.
    [13] ZHANG Y G,CHEN B,PAN G F,et al. A novel hybrid model based on VMD-WT and PCA-BP-RBF neural network for short-term wind speed forecasting[J]. Energy Conversion and Management,2019,195:180-197.
    [14] GALANIS G,PAPAGEORGIOU E,LIAKATAS A. A hybrid Bayesian Kalman filter and applications to numerical wind speed modeling[J]. Journal of Wind Engineering and Industrial Aerodynamics,2017,167:1-22.
    [15] MI X W,LIU H,LI Y F. Wind speed prediction model using singular spectrum analysis,empirical mode decomposition and convolutional support vector machine[J]. Energy Conversion and Management,2019,180:196-205.
    [16] FU W L,WANG K,LI C S,et al. Multi-step short-term wind speed forecasting approach based on multi-scale dominant ingredient chaotic analysis,improved hybrid GWO-SCA optimization and ELM[J]. Energy Conversion and Management,2019,187:356-377.
    [17] KHODAYAR M,WANG J H. Spatio-temporal graph deep neural network for short-term wind speed forecasting[J]. IEEE Transactions on Sustainable Energy,2019,10(2):670-681.
    [18] LIU H,MI X W,LI Y F. Smart deep learning based wind speed prediction model using wavelet packet decomposition,convolutional neural network and convolutional long short term memory network[J]. Energy Conversion and Management,2018,166:120-131.
    [19] YU C J,LI Y L,BAO Y L,et al. A novel framework for wind speed prediction based on recurrent neural networks and support vector machine[J]. Energy Conversion and Management,2018,178:137-145.
    [20] 李大中,李颖宇,王超. 基于卷积循环神经网络深度学习的短期风速预测[J]. 电力科学与工程,2019,35(8):1-6. LI Dazhong,LI Yingyu,WANG Chao. Short-term wind speed prediction based on convolutional recurrentneural network and deep learning[J]. Electric Power Science and Engineering,2019,35(8):1-6.
    [21] ZHANG Z D,YE L,QIN H,et al. Wind speed prediction method using shared weight long short-term memory network and Gaussian process regression[J]. Applied Energy,2019,247: 270-284.
    [22] PEI S Q,QIN H,ZHANG Z D,et al. Wind speed prediction method based on empirical wavelet transform and new cell update long short-term memory network[J]. Energy Conversion and Management,2019,196:779-792.
    [23] 李冰,张妍,刘石. 基于LSTM的短期风速预测研究[J]. 计算机仿真,2018,35(11):456-461. LI Bing,ZHANG Yan,LIU Shi. Wind speed short term prediction study based on LSTM[J]. Computer Simulation,2018,35(11):456-461.
    [24] 谢宏文,查浩,陈庆文,等. 一种使用CALSTM模型进行短期光伏功率预测的方法[J]. 供用电,2020,37(12):61-66. XIE Hongwen,ZHA Hao,CHEN Qingwen,et al. A method for short-term photovoltaic power prediction using CALSTM model[J]. Distribution & Utilization,2020,37(12):61-66.
    [25] 朱玥,顾洁,孟璐. 基于EMD-LSTM的光伏发电预测模型[J]. 电力工程技术,2020,39(2):51-58. ZHU Yue,GU Jie,MENG Lu. Photovoltaic power generation prediction model based on EMD-LSTM[J]. Electric Power Engineering Technology,2020,39(2):51-58.
    相似文献
    引证文献
引用本文

修春波,苏欢,苏雪苗.多通道长短期记忆卷积网络的风速预测[J].电力工程技术,2022,41(1):64-69

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-08-19
  • 最后修改日期:2021-10-25
  • 录用日期:2021-04-20
  • 在线发布日期: 2022-01-27
  • 出版日期: 2022-01-28
文章二维码