融合改进生成对抗与图注意力网络的配电网状态估计
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM73

基金项目:


Distribution network state estimation by fusing improved generative adversarial network and graph attention network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着分布式新能源、可控资源等新型元素接入配电网,传统状态估计模型面临量测信息不全、配电网拓扑变化频繁和负荷时序性波动等新问题,模型估计精度降低。针对该问题,文中提出一种融合改进生成对抗与图注意力网络的配电网状态估计方法。首先,选取不同的历史时间断面,利用拓扑参数和量测信息生成数据集,通过将双向长短期记忆网络引入生成对抗网络填补数据中的缺失量测信息;其次,利用图注意力网络自适应地捕捉节点间的空间动态关系,利用双向长短期记忆(bidirectional long short-term memory, BiLSTM)网络充分挖掘不同时间断面序列信息的时间耦合关系,拼接形成关于量测量到状态量的时空特征表达,得到改进图神经网络状态估计模型;最后,在IEEE 118节点系统中进行仿真实验,并与卷积神经网络、图注意力网络等算法进行对比。结果表明,文中所提算法在数据缺失和拓扑时变情况下具有更优的估计效果。

    Abstract:

    The distribution network is connected to new elements such as distributed new energy and controllable resources, and the traditional state estimation model is faced with new problems such as incomplete measurement information, frequent topology changes of the distribution network and load time series fluctuations, which lead to reduced accuracy of the model estimation. Therefore, a method of distribution network state estimation by fusing improved generative adversarial network and graph attention network is proposed in this paper. Firstly, topological parameters and measurement information in different historical time sections are selected to generate data sets. The incomplete measurement information is filled by introducing the bidirectional long short-term memory (BiLSTM) network into the generative adversarial network. Secondly, the graph attention network is used to capture the spatial dynamic relationship between the nodes adaptively, and the bidirectional long short-term memory network is used to fully excavate the time-coupling relationship of the cross-sectional sequence information in different time sections. These networks are concatenated to form the spatiotemporal feature expression of the measurement to the state, and the state estimation model of the improved graph neural network is obtained. Finally, simulation experiments are carried out in IEEE 118-bus system, and compared with other neural network algorithms such as convolutional neural network and graph attention network. The results show that the proposed algorithm has better performance in the case of missing data and time-varying topology than other neural network algorithms.

    参考文献
    相似文献
    引证文献
引用本文

赵奇,田江,徐秀之,吕洋.融合改进生成对抗与图注意力网络的配电网状态估计[J].电力工程技术,2026,45(2):131-140. ZHAO Qi, TIAN Jiang, XU Xiuzhi, L&#; Yang. Distribution network state estimation by fusing improved generative adversarial network and graph attention network[J]. Electric Power Engineering Technology,2026,45(2):131-140.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-29
  • 最后修改日期:2025-09-30
  • 在线发布日期: 2026-02-12
  • 出版日期: 2026-02-28
文章二维码