基于气象相似日修正和IPO-DLinear的日前电力负荷预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM714

基金项目:

国家重点研发计划资助项目(2022YFE0105200)


Day-ahead power load forecasting based on meteorological similar day correction and IPO-DLinear
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有电力负荷预测方法面临诸多挑战,尤其是在考虑气象因素对负荷波动的影响时,传统方法往往忽视气象特征与负荷之间复杂的非线性关系,导致预测精度不足。对此文中提出一种基于气象相似日修正(meteorological similar day correction, MSDC)和改进鹦鹉优化(improved parrot optimizer, IPO)线性分解(decomposition-based linear, DLinear)的日前电力负荷预测模型。首先运用Logistic映射、自适应变异策略、螺旋波动搜索IPO对DLinear超参数进行优化,然后由DLinear提取数据的周期性和趋势性特征,最后通过比对气象特征欧氏距离修正负荷预测值,形成基于IPO-DLinear-MSDC的日前电力负荷预测模型。采用2024年6月至10月湖南株洲地区总电力负荷数据集进行仿真分析,IPO-DLinear-MSDC模型的输出平均绝对百分比误差(mean absolute percentage error, MAPE)、决定系数R2分别为4.67%、0.833,相较于IPO-DLinear与PO-DLinear模型,MAPE分别下降了0.83个百分点、1.43个百分点,R2分别提升了0.074、0.125。

    Abstract:

    The existing power load forecasting methods encounter significant challenges, particularly when accounting for the influence of meteorological factors on load fluctuations. Traditional methods often overlook the complex nonlinear relationship between meteorological characteristics and load, leading to reduced forecasting accuracy. A day-ahead power load forecasting model based on meteorological similar day correction (MSDC)-improved parrot optimizer (IPO)-decomposition-based linear (DLinear) is proposed. The proposed method enhances the parrot optimizer (PO) by incorporating a logistic map, adaptive mutation strategy, and spiral fluctuation search to optimize the DLinear superparameters. Periodicity and trend characteristics are extracted from the DLinear model. The load forecast value is corrected by comparing the Euclidean distance of meteorological characteristics. The resulting day-ahead power load forecasting model, IPO-DLinear-MSDC, is validated using a simulation analysis of total load data from the Zhuzhou area in Hunan from June to October 2024. The model's performance is evaluated with an average absolute percentage error (MAPE) of 4.67% and R2 of 0.833, demonstrating improvements of 15.09% and 23.44%, and increases of 0.0741 and 0.1253, respectively, comparing to IPO-DLinear model and PO-DLinear model.

    参考文献
    相似文献
    引证文献
引用本文

于惠钧,赵文川,刘颉,徐银凤,邹海,辜海缤.基于气象相似日修正和IPO-DLinear的日前电力负荷预测[J].电力工程技术,2026,45(2):121-130. YU Huijun, ZHAO Wenchuan, LIU Jie, XU Yinfeng, ZOU Hai, GU Haibin. Day-ahead power load forecasting based on meteorological similar day correction and IPO-DLinear[J]. Electric Power Engineering Technology,2026,45(2):121-130.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-01
  • 最后修改日期:2025-08-09
  • 在线发布日期: 2026-02-12
  • 出版日期: 2026-02-28
文章二维码