基于OCSVM的行业负荷特征异常辨识方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM714

基金项目:

国家自然科学基金资助项目(52107098)


OCSVM-based method for identifying abnormal load characteristics in industry
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决近年来用户行业变化特性加剧导致的难以准确辨识用户档案信息变动的问题,文中提出一种基于数据驱动的负荷特征异常辨识方法。首先,提出一种两阶段行业典型负荷形态构建方法,利用基于层次密度的含噪声应用空间聚类(hierarchical density-based spatial clustering of applications with noise, HDBSCAN)提取用户在不同场景下的典型日负荷曲线,并利用改进的K-means算法对提取出的典型日负荷曲线进行聚类分析,构建行业的典型负荷形态;其次,提出一种多维场景负荷特征异常智能研判方法,通过构造用户的负荷特征,使用熵权法评估行业典型场景的相对重要性,并采用单分类支持向量机(one-class support vector machine, OCSVM)算法量化每个场景下的用户负荷特征的异常程度,通过加权计算得到用户的综合嫌疑得分并排序,从而实现对负荷特征异常用户的准确辨识。最后,采用某地区实际用户数据进行算例验证。仿真结果表明,所提方法在行业典型负荷场景构建及负荷特征异常辨识方面表现出良好的可行性与实用价值。

    Abstract:

    To address the challenge faced by power grid companies in accurately detecting changes in user industry information, which has been complicated by the increasing variability of industry characteristics in recent years, a data-driven approach for identifying anomalies in load characteristics is proposed. Initially, a two-stage methodology for developing typical load patterns for various industries is presented. The hierarchical density-based spatial clustering of applications with noise (HDBSCAN) technique is utilized to extract typical daily load curves for users under different scenarios. Subsequently, these extracted daily load curves are clustered using an improved K-means algorithm to establish typical load patterns for the respective industries. In the second phase, a multidimensional intelligent diagnostic method for load characteristic anomalies is introduced. User load characteristics are constructed, and the entropy weight method is employed to evaluate the relative significance of typical industry scenarios. The one-class support vector machine (OCSVM) algorithm is then utilized to quantify the degree of anomaly present in user load characteristics across each scenario. Comprehensive suspicion scores are calculated and ranked to accurately identify users exhibiting abnormal load characteristics. The effectiveness of the proposed method is validated through the analysis of actual user data from a specific region. The results demonstrate that the method is both feasible and practical for constructing typical industry load scenarios and for the identification of load characteristic anomalies.

    参考文献
    相似文献
    引证文献
引用本文

陈光宇,杨光,施蔚锦,蔡鑫灿,陈婉清,刘昊.基于OCSVM的行业负荷特征异常辨识方法[J].电力工程技术,2026,45(2):70-79. CHEN Guangyu, YANG Guang, SHI Weijin, CAI Xincan, CHEN Wanqing, LIU Hao. OCSVM-based method for identifying abnormal load characteristics in industry[J]. Electric Power Engineering Technology,2026,45(2):70-79.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-29
  • 最后修改日期:2025-10-23
  • 在线发布日期: 2026-02-12
  • 出版日期: 2026-02-28
文章二维码