基于在线顺序极限学习机模型的锂离子电池健康状况预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM912

基金项目:

国家自然科学基金资助项目(52107019)


Lithium-ion battery health prediction based on online sequential extreme learning machine model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对锂电池健康状况预测精度不高以及模型不能实现在线更新的问题,文中提出基于在线顺序极限学习机(online sequential extreme learning machine, OSELM)模型的锂电池健康状况预测方法。首先,从锂离子电池历史充放电数据中获取与电池容量相关度高的健康因子,通过鹅算法优化OSELM(记作GOOSE-OSELM)提高模型的预测精度,同时引入柯西逆累积分布算子和正切飞行算子对鹅算法进行改进,提高模型全局优化能力和收敛速度,形成计算速度快且能在线更新的算法模型。然后,将改进鹅算法优化OSELM(记作IGOOSE-OSELM)的预测结果与GOOSE-OSELM、OSELM、反向传播(back propagation, BP)神经网络、鲸鱼算法优化最小二乘支持向量机(whale optimization algorithm-least squares support vector machine, WOA-LSSVM)进行对比,结果显示,在3个电池数据集中IGOOSE-OSELM的拟合优度值均超0.997,均方根误差都小于0.0045。最后,利用牛津电池数据集和NASA电池数据集对模型的泛化能力加以验证,结果表明IGOOSE-OSELM模型能够准确预测电池的健康状况,模型具有较高的鲁棒性和适应性。

    Abstract:

    Aiming at the problems that the prediction accuracy of lithium battery health status is not high and the model cannot be updated online, a lithium-ion battery health prediction method based on the online sequential extreme learning machine (OSELM) model is proposed. The health factors with high correlation with battery capacity are obtained from the historical charge and discharge data of lithiumion batteries, and the OSELM model is optimized by goose algorithm (GOOSE-OSELM) to improve the prediction accuracy of the model. At the same time, the Cauchy inverse cumulative distribution operator and tangent flight operator are introduced to improve the goose algorithm to improve the global optimization ability and convergence speed of the model, and form an algorithm model with fast calculation speed and online update. The prediction results of the improved goose algorithm-optimized OSELM model (IGOOSE-OSELM) are compared with those of GOOSE-OSELM, OSELM, back propagation (BP) neural networks, and whale optimization algorithm-least squares support vector machine (WOA-LSSVM). The results show that the goodness of fit values of IGOOSE-OSELM in the three battery datasets are above 0.997, and the root mean square error is less than 0.004 5. Finally, the generalization ability of the model is verified by using the Oxford battery dataset and the NASA battery dataset. The results show that the IGOOSE-OSELM model can accurately predict the health status of the battery, and the model has high robustness and adaptability.

    参考文献
    相似文献
    引证文献
引用本文

郑启达,赵谡,汪彪,赵孝磊,王亚林,尹毅.基于在线顺序极限学习机模型的锂离子电池健康状况预测[J].电力工程技术,2026,45(2):51-59. ZHENG Qida, ZHAO Su, WANG Biao, ZHAO Xiaolei, WANG Yalin, YIN Yi. Lithium-ion battery health prediction based on online sequential extreme learning machine model[J]. Electric Power Engineering Technology,2026,45(2):51-59.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-02
  • 最后修改日期:2025-09-30
  • 在线发布日期: 2026-02-12
  • 出版日期: 2026-02-28
文章二维码